989 resultados para Technical reports.
Resumo:
This paper addresses the problem of analyzing performance of WWW servers. The web has experienced a phenomenal growth and has become the most popular Internet application. As a consequence of its large popularity, the Internet has suffered from various performance problems, such as network congestion and overloaded servers. These days, it is not uncommon to find servers refusing connections because they are overloaded. Performance has always been a key issue in the design and operation of on-line systems. With regard to Internet, performance is also critical, because users want fast and easy access to all objects (i.e., documents, pictures, audio, and video) available on the net. Thus, it is important to understand WWW performance issues. This paper focuses on the performance analysis of a Web server. Using a synthetic benchmark (WebStone), we analyze three different Web server software running on top of a Windows NT platform and performing some typical WWW tasks.
Resumo:
We define a unification problem ^UP with the property that, given a pure lambda-term M, we can derive an instance Gamma(M) of ^UP from M such that Gamma(M) has a solution if and only if M is beta-strongly normalizable. There is a type discipline for pure lambda-terms that characterizes beta-strong normalization; this is the system of intersection types (without a "top" type that can be assigned to every lambda-term). In this report, we use a lean version LAMBDA of the usual system of intersection types. Hence, ^UP is also an appropriate unification problem to characterize typability of lambda-terms in LAMBDA. It also follows that ^UP is an undecidable problem, which can in turn be related to semi-unification and second-order unification (both known to be undecidable).
Resumo:
We generalize the well-known pebble game to infinite dag's, and we use this generalization to give new and shorter proofs of results in different areas of computer science (as diverse as "logic of programs" and "formal language theory"). Our applications here include a proof of a theorem due to Salomaa, asserting the existence of a context-free language with infinite index, and a proof of a theorem due to Tiuryn and Erimbetov, asserting that unbounded memory increases the power of logics of programs. The original proofs by Salomaa, Tiuryn, and Erimbetov, are fairly technical. The proofs by Tiuryn and Erimbetov also involve advanced techniques of model theory, namely, back-and-forth constructions based on a variant of Ehrenfeucht-Fraisse games. By contrast, our proofs are not only shorter, but also elementary. All we need is essentially finite induction and, in the case of the Tiuryn-Erimbetov result, the compactness and completeness of first-order logic.
Resumo:
If every lambda-abstraction in a lambda-term M binds at most one variable occurrence, then M is said to be "linear". Many questions about linear lambda-terms are relatively easy to answer, e.g. they all are beta-strongly normalizing and all are simply-typable. We extend the syntax of the standard lambda-calculus L to a non-standard lambda-calculus L^ satisfying a linearity condition generalizing the notion in the standard case. Specifically, in L^ a subterm Q of a term M can be applied to several subterms R1,...,Rk in parallel, which we write as (Q. R1 \wedge ... \wedge Rk). The appropriate notion of beta-reduction beta^ for the calculus L^ is such that, if Q is the lambda-abstraction (\lambda x.P) with m\geq 0 bound occurrences of x, the reduction can be carried out provided k = max(m,1). Every M in L^ is thus beta^-SN. We relate standard beta-reduction and non-standard beta^-reduction in several different ways, and draw several consequences, e.g. a new simple proof for the fact that a standard term M is beta-SN iff M can be assigned a so-called "intersection" type ("top" type disallowed).
Resumo:
System F is the well-known polymorphically-typed λ-calculus with universal quantifiers ("∀"). F+η is System F extended with the eta rule, which says that if term M can be given type τ and M η-reduces to N, then N can also be given the type τ. Adding the eta rule to System F is equivalent to adding the subsumption rule using the subtyping ("containment") relation that Mitchell defined and axiomatized [Mit88]. The subsumption rule says that if M can be given type τ and τ is a subtype of type σ, then M can be given type σ. Mitchell's subtyping relation involves no extensions to the syntax of types, i.e., no bounded polymorphism and no supertype of all types, and is thus unrelated to the system F≤("F-sub"). Typability for F+η is the problem of determining for any term M whether there is any type τ that can be given to it using the type inference rules of F+η. Typability has been proven undecidable for System F [Wel94] (without the eta rule), but the decidability of typability has been an open problem for F+η. Mitchell's subtyping relation has recently been proven undecidable [TU95, Wel95b], implying the undecidability of "type checking" for F+η. This paper reduces the problem of subtyping to the problem of typability for F+η, thus proving the undecidability of typability. The proof methods are similar in outline to those used to prove the undecidability of typability for System F, but the fine details differ greatly.
Resumo:
The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.
Resumo:
Server performance has become a crucial issue for improving the overall performance of the World-Wide Web. This paper describes Webmonitor, a tool for evaluating and understanding server performance, and presents new results for a realistic workload. Webmonitor measures activity and resource consumption, both within the kernel and in HTTP processes running in user space. Webmonitor is implemented using an efficient combination of sampling and event-driven techniques that exhibit low overhead. Our initial implementation is for the Apache World-Wide Web server running on the Linux operating system. We demonstrate the utility of Webmonitor by measuring and understanding the performance of a Pentium-based PC acting as a dedicated WWW server. Our workload uses a file size distribution with a heavy tail. This captures the fact that Web servers must concurrently handle some requests for large audio and video files, and a large number of requests for small documents, containing text or images. Our results show that in a Web server saturated by client requests, over 90% of the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping TCP connections open, as required by TCP, causes a factor of 2-9 increase in the elapsed time required to service an HTTP request. Data gathered from Webmonitor provide insight into the causes of this performance penalty. Specifically, we observe a significant increase in resource consumption along three dimensions: the number of HTTP processes running at the same time, CPU utilization, and memory utilization. These results emphasize the important role of operating system and network protocol implementation in determining Web server performance.
Resumo:
This paper explores the problem of protecting a site on the Internet against hostile external Java applets while allowing trusted internal applets to run. With careful implementation, a site can be made resistant to current Java security weaknesses as well as those yet to be discovered. In addition, we describe a new attack on certain sophisticated firewalls that is most effectively realized as a Java applet.
Resumo:
While ATM bandwidth-reservation techniques are able to offer the guarantees necessary for the delivery of real-time streams in many applications (e.g. live audio and video), they suffer from many disadvantages that make them inattractive (or impractical) for many others. These limitations coupled with the flexibility and popularity of TCP/IP as a best-effort transport protocol have prompted the network research community to propose and implement a number of techniques that adapt TCP/IP to the Available Bit Rate (ABR) and Unspecified Bit Rate (UBR) services in ATM network environments. This allows these environments to smoothly integrate (and make use of) currently available TCP-based applications and services without much (if any) modifications. However, recent studies have shown that TCP/IP, when implemented over ATM networks, is susceptible to serious performance limitations. In a recently completed study, we have unveiled a new transport protocol, TCP Boston, that turns ATM's 53-byte cell-oriented switching architecture into an advantage for TCP/IP. In this paper, we demonstrate the real-time features of TCP Boston that allow communication bandwidth to be traded off for timeliness. We start with an overview of the protocol. Next, we analytically characterize the dynamic redundancy control features of TCP Boston. Next, We present detailed simulation results that show the superiority of our protocol when compared to other adaptations of TCP/IP over ATMs. In particular, we show that TCP Boston improves TCP/IP's performance over ATMs for both network-centric metrics (e.g., effective throughput and percent of missed deadlines) and real-time application-centric metrics (e.g., response time and jitter).
Resumo:
Prefetching has been shown to be an effective technique for reducing user perceived latency in distributed systems. In this paper we show that even when prefetching adds no extra traffic to the network, it can have serious negative performance effects. Straightforward approaches to prefetching increase the burstiness of individual sources, leading to increased average queue sizes in network switches. However, we also show that applications can avoid the undesirable queueing effects of prefetching. In fact, we show that applications employing prefetching can significantly improve network performance, to a level much better than that obtained without any prefetching at all. This is because prefetching offers increased opportunities for traffic shaping that are not available in the absence of prefetching. Using a simple transport rate control mechanism, a prefetching application can modify its behavior from a distinctly ON/OFF entity to one whose data transfer rate changes less abruptly, while still delivering all data in advance of the user's actual requests.
Resumo:
We propose a new characterization of protein structure based on the natural tetrahedral geometry of the β carbon and a new geometric measure of structural similarity, called visible volume. In our model, the side-chains are replaced by an ideal tetrahedron, the orientation of which is fixed with respect to the backbone and corresponds to the preferred rotamer directions. Visible volume is a measure of the non-occluded empty space surrounding each residue position after the side-chains have been removed. It is a robust, parameter-free, locally-computed quantity that accounts for many of the spatial constraints that are of relevance to the corresponding position in the native structure. When computing visible volume, we ignore the nature of both the residue observed at each site and the ones surrounding it. We focus instead on the space that, together, these residues could occupy. By doing so, we are able to quantify a new kind of invariance beyond the apparent variations in protein families, namely, the conservation of the physical space available at structurally equivalent positions for side-chain packing. Corresponding positions in native structures are likely to be of interest in protein structure prediction, protein design, and homology modeling. Visible volume is related to the degree of exposure of a residue position and to the actual rotamers in native proteins. In this article, we discuss the properties of this new measure, namely, its robustness with respect to both crystallographic uncertainties and naturally occurring variations in atomic coordinates, and the remarkable fact that it is essentially independent of the choice of the parameters used in calculating it. We also show how visible volume can be used to align protein structures, to identify structurally equivalent positions that are conserved in a family of proteins, and to single out positions in a protein that are likely to be of biological interest. These properties qualify visible volume as a powerful tool in a variety of applications, from the detailed analysis of protein structure to homology modeling, protein structural alignment, and the definition of better scoring functions for threading purposes.
Resumo:
World-Wide Web (WWW) services have grown to levels where significant delays are expected to happen. Techniques like pre-fetching are likely to help users to personalize their needs, reducing their waiting times. However, pre-fetching is only effective if the right documents are identified and if user's move is correctly predicted. Otherwise, pre-fetching will only waste bandwidth. Therefore, it is productive to determine whether a revisit will occur or not, before starting pre-fetching. In this paper we develop two user models that help determining user's next move. One model uses Random Walk approximation and the other is based on Digital Signal Processing techniques. We also give hints on how to use such models with a simple pre-fetching technique that we are developing.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. To gather images expediently, the image collection subsystem utilizes a distributed fleet of WWW robots running on different computers. The image robots gather information about the images they find, computing the appropriate image decompositions and indices, and store this extracted information in vector form for searches based on image content. At search time, users can iteratively guide the search through the selection of relevant examples. Search performance is made efficient through the use of an approximate, optimized k-d tree algorithm. The system employs a novel relevance feedback algorithm that selects the distance metrics appropriate for a particular query.
Resumo:
One role for workload generation is as a means for understanding how servers and networks respond to variation in load. This enables management and capacity planning based on current and projected usage. This paper applies a number of observations of Web server usage to create a realistic Web workload generation tool which mimics a set of real users accessing a server. The tool, called Surge (Scalable URL Reference Generator) generates references matching empirical measurements of 1) server file size distribution; 2) request size distribution; 3) relative file popularity; 4) embedded file references; 5) temporal locality of reference; and 6) idle periods of individual users. This paper reviews the essential elements required in the generation of a representative Web workload. It also addresses the technical challenges to satisfying this large set of simultaneous constraints on the properties of the reference stream, the solutions we adopted, and their associated accuracy. Finally, we present evidence that Surge exercises servers in a manner significantly different from other Web server benchmarks.
Resumo:
There is an increased interest in using broadcast disks to support mobile access to real-time databases. However, previous work has only considered the design of real-time immutable broadcast disks, the contents of which do not change over time. This paper considers the design of programs for real-time mutable broadcast disks - broadcast disks whose contents are occasionally updated. Recent scheduling-theoretic results relating to pinwheel scheduling and pfair scheduling are used to design algorithms for the efficient generation of real-time mutable broadcast disk programs.