949 resultados para TRYPANOTHIONE REDUCTASE
Resumo:
Increasing resistance of Plasmodium falciparum malaria parasites to chloroquine and the dihydrofolate reductase (DHFR) inhibitors pyrimethamine and cycloguanil have sparked renewed interest in the antimalarial drugs WR99210 and proguanil, the cycloguanil precursor. To investigate suggestions that WR99210 and proguanil act against a target other than the reductase moiety of the P. falciparum bifunctional DHFR–thymidylate synthase enzyme, we have transformed P. falciparum with a variant form of human DHFR selectable by methotrexate. Human DHFR was found to fully negate the antiparasitic effect of WR99210, thus demonstrating that the only significant action of WR99210 is against parasite DHFR. Although the human enzyme also resulted in greater resistance to cycloguanil, no decrease was found in the level of susceptibility of transformed parasites to proguanil, thus providing evidence of intrinsic activity of this parent compound against a target other than DHFR. The transformation system described here has the advantage that P. falciparum drug-resistant lines are uniformly sensitive to methotrexate and will complement transformation with existing pyrimethamine-resistance markers in functional studies of P. falciparum genes. This system also provides an approach for screening and identifying novel DHFR inhibitors that will be important in combined chemotherapeutic formulations against malaria.
Resumo:
Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl–SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.
Resumo:
A common mutation (C677T) in the gene encoding for methylenetetrahydrofolate reductase (MTHFR) (5-methyltetrahydrofolate:(acceptor) oxidoreductase, EC 1.7.99.5), a key regulatory enzyme in one-carbon metabolism, results in a thermolabile variant of the MTHFR enzyme with reduced activity in vitro. In the present study we used a chromatographic method for folate analysis to test the hypothesis that this mutation would be associated with altered distribution of red blood cell (RBC) folates. An alteration was found as manifested by the presence of formylated tetrahydrofolate polyglutamates in addition to methylated derivatives in the RBCs from homozygous mutant individuals. 5-Methyltetrahydrofolate polyglutamates were the only folate form found in RBCs from individuals with the wild-type genotype. Existence of formylated folates in RBCs only from individuals with the thermolabile MTHFR is consistent with the hypothesis that there is in vivo impairment in the activity of the thermolabile variant of MTHFR and that this impairment results in an altered distribution of RBC folates.
Resumo:
Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.
Resumo:
Sulfate-assimilating organisms reduce inorganic sulfate for Cys biosynthesis. There are two leading hypotheses for the mechanism of sulfate reduction in higher plants. In one, adenosine 5′-phosphosulfate (APS) (5′-adenylylsulfate) sulfotransferase carries out reductive transfer of sulfate from APS to reduced glutathione. Alternatively, the mechanism may be similar to that in bacteria in which the enzyme, 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase, catalyzes thioredoxin (Trx)-dependent reduction of PAPS. Three classes of cDNA were cloned from Arabidopsis thaliana termed APR1, -2, and -3, that functionally complement a cysH, PAPS reductase mutant strain of Escherichia coli. The coding sequence of the APR clones is homologous with PAPS reductases from microorganisms. In addition, a carboxyl-terminal domain is homologous with members of the Trx superfamily. Further genetic analysis showed that the APR clones can functionally complement a mutant strain of E. coli lacking Trx, and an APS kinase, cysC. mutant. These results suggest that the APR enzyme may be a Trx-independent APS reductase. Cell extracts of E. coli expressing APR showed Trx-independent sulfonucleotide reductase activity with a preference for APS over PAPS as a substrate. APR-mediated APS reduction is dependent on dithiothreitol, has a pH optimum of 8.5, is stimulated by high ionic strength, and is sensitive to inactivation by 5′-adenosinemonophosphate (5′-AMP). 2′-AMP, or 3′-phosphoadenosine-5′-phosphate (PAP), a competitive inhibitor of PAPS reductase, do not affect activity. The APR enzymes may be localized in different cellular compartments as evidenced by the presence of an amino-terminal transit peptide for plastid localization in APR1 and APR3 but not APR2. Southern blot analysis confirmed that the APR clones are members of a small gene family, possibly consisting of three members.
Resumo:
Regulation of the sterol-synthesizing mevalonate pathway occurs in part through feedback-regulated endoplasmic reticulum degradation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R). In yeast, the Hmg2p isozyme of HMG-R is regulated in this manner. We have tested the involvement of ubiquitination in the regulated degradation of Hmg2p, by using both genetic and direct biochemical approaches. Hmg2p degradation required the UBC7 gene, and Hmg2p protein was directly ubiquitinated. Hmg2p ubiquitination was dependent on UBC7 and was specific for the degraded yeast Hmg2p isozyme. Furthermore, Hmg2p ubiquitination was regulated by the mevalonate pathway in a manner consistent with regulation of Hmg2p stability. Thus, regulated ubiquitination appeared to be the mechanism by which Hmg2p stability is controlled in yeast. Finally, our data indicated that the feedback signal controlling Hmg2p ubiquitination and degradation was derived from farnesyl diphosphate, and thus implied conservation of an HMG-R degradation signal between yeast and mammals.
Resumo:
Our recent studies have shown that deregulated expression of R2, the rate-limiting component of ribonucleotide reductase, enhances transformation and malignant potential by cooperating with activated oncogenes. We now demonstrate that the R1 component of ribonucleotide reductase has tumor-suppressing activity. Stable expression of a biologically active ectopic R1 in ras-transformed mouse fibroblast 10T½ cell lines, with or without R2 overexpression, led to significantly reduced colony-forming efficiency in soft agar. The decreased anchorage independence was accompanied by markedly suppressed malignant potential in vivo. In three ras-transformed cell lines, R1 overexpression resulted in abrogation or marked suppression of tumorigenicity. In addition, the ability to form lung metastases by cells overexpressing R1 was reduced by >85%. Metastasis suppressing activity also was observed in the highly malignant mouse 10T½ derived RMP-6 cell line, which was transformed by a combination of oncogenic ras, myc, and mutant p53. Furthermore, in support of the above observations with the R1 overexpressing cells, NIH 3T3 cells cotransfected with an R1 antisense sequence and oncogenic ras showed significantly increased anchorage independence as compared with control ras-transfected cells. Finally, characteristics of reduced malignant potential also were demonstrated with R1 overexpressing human colon carcinoma cells. Taken together, these results indicate that the two components of ribonucleotide reductase both are unique malignancy determinants playing opposing roles in its regulation, that there is a novel control point important in mechanisms of malignancy, which involves a balance in the levels of R1 and R2 expression, and that alterations in this balance can significantly modify transformation, tumorigenicity, and metastatic potential.
Resumo:
The yeast peptide-methionine sulfoxide reductase (MsrA) was overexpressed in a Saccharomyces cerevisiae null mutant of msrA by using a high-copy plasmid harboring the msrA gene and its promoter. The resulting strain had about 25-fold higher MsrA activity than its parent strain. When exposed to either hydrogen peroxide, paraquat, or 2,2′-azobis-(2-amidinopropane) dihydrochloride treatment, the MsrA overexpressed strain grew better, had lower free and protein-bound methionine sulfoxide and had a better survival rate under these conditions than did the msrA mutant and its parent strain. Substitution of methionine with methionine sulfoxide in a medium lacking hydrogen peroxide had little effect on the growth pattern, which suggests that the oxidation of free methionine in the growth medium was not the main cause of growth inhibition of the msrA mutant. Ultraviolet A radiation did not result in obvious differences in survival rates among the three strains. An enhanced resistance to hydrogen peroxide treatment was shown in human T lymphocyte cells (Molt-4) that were stably transfected with the bovine msrA and exposed to hydrogen peroxide. The survival rate of the transfected strain was much better than its parent strain when grown in the presence of hydrogen peroxide. These results support the proposition that the msrA gene is involved in the resistance of yeast and mammalian cells to oxidative stress.
Resumo:
The flavin hydroperoxide at the active site of the mixed-function oxidase 2-aminobenzoyl-CoA monooxygenase/reductase (Azoarcus evansii) transfers an oxygen to the 5-position of the 2-aminobenzoyl-CoA substrate to provide the alkoxide intermediate II−. Hydrogen migration from C5 to C6 follows this monooxygenation. The nature of the monooxygenation intermediate and plausible competing reactions leading to hydrogen migration have been considered. Ab initio molecular orbital theory has been used to calculate structures and electron distributions in intermediate and transition state structures. Electrostatic potential surface calculations establish that the transition state and product, associated with the C5 to C6 hydrogen transfer, are stabilized by electron distribution to the benzoyl-CoA thioester carbonyl oxygen. This is not so for the transition state and product associated with hydrogen transfer from C5 to C4. The activation energy for the 5,6-shift is 2.5 kcal/mol lower than that for the 5,4-shift. In addition, the product of the hydrogen 5,6-shift is more stable than is the product of the hydrogen 5,4-shift, by ≈6 kcal/mol. These results explain why only the shift of hydrogen from C5 to C6 is observed experimentally. Oxygen transfer and hydrogen migration almost coincide in the gas phase (activation energy of ≈0.6 kcal/mol, equivalent to a single bond vibration). Enzymatic formation of alkoxide II− requires its stabilization; thus, the rate constant for its breakdown would be slower than in the gas phase.
Resumo:
Ribonucleotide reductase activity is required for generating deoxyribonucleotides for DNA replication. Schizosaccharomyces pombe cells lacking ribonucleotide reductase activity arrest during S phase of the cell cycle. In a screen for hydroxyurea-sensitive mutants in S. pombe, we have identified a gene, liz1+, which when mutated reveals an additional, previously undescribed role for ribonucleotide reductase activity during mitosis. Inactivation of ribonucleotide reductase, by either hydroxyurea or a cdc22-M45 mutation, causes liz1− cells in G2 to undergo an aberrant mitosis, resulting in chromosome missegregation and late mitotic arrest. liz1+ encodes a 514-amino acid protein with strong similarity to a family of transmembrane transporters, and localizes to the plasma membrane of the cell. These results reveal an unexpected G2/M function of ribonucleotide reductase and establish that defects in a transmembrane protein can affect cell cycle progression.
Resumo:
The degradation rate of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-R), a key enzyme of the mevalonate pathway, is regulated through a feedback mechanism by the mevalonate pathway. To discover the intrinsic determinants involved in the regulated degradation of the yeast HMG-R isozyme Hmg2p, we replaced small regions of the Hmg2p transmembrane domain with the corresponding regions from the other, stable yeast HMG-R isozyme Hmg1p. When the first 26 amino acids of Hmg2p were replaced with the same region from Hmg1p, Hmg2p was stabilized. The stability of this mutant was not due to mislocalization, but rather to an inability to be recognized for degradation. When amino acid residues 27–54 of Hmg2p were replaced with those from Hmg1p, the mutant was still degraded, but its degradation rate was poorly regulated. The degradation of this mutant was still dependent on the first 26 amino acid residues and on the function of the HRD genes. These mutants showed altered ubiquitination levels that were well correlated with their degradative phenotypes. Neither determinant was sufficient to impart regulated degradation to Hmg1p. These studies provide evidence that there are sequence determinants in Hmg2p necessary for degradation and optimal regulation, and that independent processes may be involved in Hmg2p degradation and its regulation.
Resumo:
In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using β-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.
Resumo:
The concentration of urea in renal medullary cells is high enough to affect enzymes seriously by reducing Vmax or raising Km, yet the cells survive and function. The usual explanation is that the methylamines found in the renal medulla, namely glycerophosphocholine and betaine, have actions opposite to those of urea and thus counteract its effects. However, urea and methylamines have the similar (not counteracting) effects of reducing both the Km and Vmax of aldose reductase (EC 1.1.1.21), an enzyme whose function is important in renal medullas. Therefore, we examined factors that might determine whether counteraction occurs, namely different combinations of assay conditions (pH and salt concentration), methylamines (glycerophosphocholine, betaine, and trimethylamine N-oxide), substrates (dl-glyceraldehyde and d-xylose), and a mutation in recombinant aldose reductase protein (C298A). We find that Vmax of both wild-type and C298A mutant generally is reduced by urea and/or the methylamines. However, the effects on Km are much more complex, varying widely with the combination of conditions. At one extreme, we find a reduction of Km of wild-type enzyme by urea and/or methylamines that is partially additive, whereas at the other extreme we find that urea raises Km for d-xylose of the C298A mutant, betaine lowers the Km, and the two counteract in a classical fashion so that at a 2:1 molar ratio of betaine to urea there is no net effect. We conclude that counteraction of urea effects on enzymes by methylamines can depend on ion concentration, pH, the specific methylamine and substrate, and identity of even a single amino acid in the enzyme.
Resumo:
Jasmonic acid (JA) and its precursor 12-oxophytodienoic acid (OPDA) act as plant growth regulators and mediate responses to environmental cues. To investigate the role of these oxylipins in anther and pollen development, we characterized a T-DNA-tagged, male-sterile mutant of Arabidopsis, opr3. The opr3 mutant plants are sterile but can be rendered fertile by exogenous JA but not by OPDA. Cloning of the mutant locus indicates that it encodes an isozyme of 12-oxophytodienoate reductase, designated OPR3. All of the defects in opr3 are alleviated by transformation of the mutant with an OPR3 cDNA. Our results indicate that JA and not OPDA is the signaling molecule that induces and coordinates the elongation of the anther filament, the opening of the stomium at anthesis, and the production of viable pollen. Just as importantly, our data demonstrate that OPR3 is the only isoform of OPR capable of reducing the correct stereoisomer of OPDA to produce JA required for male gametophyte development.
Resumo:
Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1-Å resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.