963 resultados para TRANSITION-METAL ATOMS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular modelling studies have been carried out on two bis(calix[4]diqu(inone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH2)(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na+, K+, Rb+, and Cs+ in dmso solution. Conformational. analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion, of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb+ approximate to K+ > Cs+ >> Na+, which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs+ and K+ complexes is only 0.60, showing that 1 has only a slight preference for K+. For the larger receptor 2, which is better suited to metal complexation, the binding affinity follows the pattern Cs+ >> Rb+ >> K+ >> Na+, with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 x 2)-S and c(2 x 2)-S surface structures formed by exposing the (1 x 1) phase of Ir{100} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 x 2)-S and 0.16 for the c(2 x 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 +/- 0.01 angstrom and 3.33 +/- 0.01 angstrom, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{100} transition metal surfaces: 0.09 angstrom for p(2 x 2)-S and 0.02 angstrom for c(2 x 2)-S structures. The (1 x 5) reconstruction, which is the most stable phase for clean Ir{100}, is completely lifted and a c(2 x 2)-S overlayer is formed after exposure to H,S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanism of the Heck reaction has been studied with regard to transition metal catalysis of the addition of propene and the formation of unsaturated polymers. The reactivity of nickel and palladium complexes with five different bidentate ligands with O,N donor atoms has been investigated by computational methods involving density functional theory. Hence, it is possible to understand the electronic and steric factors affecting the reaction and their relative importance in determining the products formed in regard of their control of the regiochemistry of the products. Our results show that whether the initial addition of propene is trans to O or to N of the bidentate ligand is of crucial importance to the subsequent reactions. Thus when the propene is trans to 0, 1,2-insertion is favoured, but when the propene is trans to N, then 2,1-insertion is favoured. This difference in the preferred insertion pathway can be related to the charge distribution engendered in the propene moiety when the complex is formed. Indeed charge effects are important for catalytic activity but also for regioselectivity. Steric effects are shown to be of lesser importance even when t-butyl is introduced into the bidentate ligand as a substituent. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The skutterudites YbxFe2Ni2Sb12 (0≤x≤0.4) have been prepared by solid-state reaction and characterised by powder X-ray diffraction. The compounds crystallise in the cubic space group Im View the MathML source3¯ (a≈9.1 Å) with Yb atoms partially filling the voids in the skutterudite framework. A neutron time-of-flight diffraction experiment for Fe2Ni2Sb12 confirms the disorder of Fe and Ni atoms on the transition-metal site. Electrical resistivity, Seebeck coefficient and thermal conductivity measurements indicate that the thermoelectric performance of the skutterudites shows a marked dependence on the Yb content. Magnetic measurements over the temperature range 2≤T/K≤300 show paramagnetic behaviour for all compounds. Decomposition studies under an oxidising atmosphere at elevated temperatures have also been carried out by thermogravimetric analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alkaline earth tricyanomethanides Mg(tcm)(2) center dot 2H(2)O, Ca(tcm)(2), Sr(tcm)(2) - H2O and Ba(tcm)(2) center dot 2H(2)O were prepared from aqueous solutions of the respective chlorides and silver tricyanomethanide. Their IR spectra and thermal behavior are described. The crystal structures of Ca(tcm)(2) and Ba(tcm)(2) center dot 2H(2)O were determined by single crystal X-ray diffraction. The structure of Ca(tcm)(2) is of the type found for several transition metal tricyanomethanides [1], containing two independent interpenetrating networks. Ba(tcm)(2) center dot 2H(2)O has a unique crystal structure corresponding to a three-dimensional coordination polymer with nine fold coordinated Ba atoms connected by water molecules and tricyanomethanide anions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiconfigurational second-order perturbation theory (CASSCF//CASPT2) and quadruple-zeta ANO-RCC basis sets were employed to investigate the ground and low-lying electronic states of MoB and MoB(+). Spectroscopic constants, potential energy curves, wavefunctions, Mulliken population analyses, and ionization energies are given. The ground state of MoB is of X(6)Pi symmetry (R(e) = 1.968 angstrom, omega(e) = 664 cm(-1), and mu = 2.7 D), giving rise to a Omega = 7/2 ground state after including spin-orbit coupling. For MoB(+), the ground state is computed to be of X(7)Sigma(+) symmetry (R(e) = 2.224 angstrom, omega(e) = 141 cm(-1), and mu = 1.2 D), with an adiabatic ionization energy of 7.19 eV and a vertical one of 7.53 eV. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 3362-3370, 2011

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solvatochromic and ionochromic effects of the iron(II)bis(1,10-phenanthroline)dicyano (Fe(phen)(2)(CN)(2)) complex were investigated by means of combined DFT/TDDFT calculations using the PBE and B3LYP functionals. Extended solvation models of Fe(phen)(2)(CN)(2) in acetonitrile and aqueous solution, as well as including interaction with Mg(2+), were constructed. The calculated vertical excitation energies reproduce well the observed solvatochromism in acetonitrile and aqueous solutions, the ionochromism in acetonitrile in the presence of Mg(2+), and the absence of ionochromic effect in aqueous solution. The vertical excitation energies and the nature of the transitions were reliably predicted after inclusion of geometry relaxation upon aqueous micro- and global solvation and solvent polarization effect in the TDDFT calculations. The two intense UV-vis absorption bands occurring for all systems studied are interpreted as transitions from a hybrid Fe(II)(d)/cyano N(p) orbital to a phenanthroline pi* orbital rather than a pure metal-to-ligand-charge transfer (MLCT). The solvatochromic and ionochromic blue band shifts of Fe(phen)(2)(CN)(2) were explained with preferential stabilization of the highest occupied Fe(II)(d)/cyano N(p) orbitals as a result of specific interactions with water solvent molecules or Mg(2+) ions in solution. Such interactions occur through the CN(-) groups in the complex, and they have a decisive role for the observed blue shifts of UV-vis absorption bands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface-enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M(4)(py) (four metal atoms bonded to one py moiety) and M(4)(alpha-pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M(4)(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed alpha-pyridil species, as suggested previously. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit Coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given, The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 angstrom and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electronic structure and chemical bonding of the ground and low-lying Lambda - S and Omega states of Ta(2) were investigated at the multiconfiguration second-order perturbation theory (CASSCF//CASPT2) level. The ground state of Ta(2) is computed to be a X(3)Sigma(-)(g) state (R(e) = 2.120 angstrom, omega(e) = 323 cm(-1), and D(e) = 4.65 eV), with two low-lying singlet states close to it (a(1) Sigma(+)(g) : T(e) = 409 cm(-1), R(e) = 2.131 angstrom, and omega(e) = 313 cm(-1); b(1) Gamma(g): T(e) = 1, 038 cm(-1), R(e) = 2.127 angstrom, and omega(e) = 316 cm(-1)). These electronic states are derived from the same electronic configuration: vertical bar 13 sigma(2)(g)14 sigma(2)(g)7 delta(2)(g)13 pi(4)(u)>. The effective bond order of the X(3) Sigma(-)(g) state is 4.52, which indicates that the Ta atoms are bound by a quintuple chemical bond. The a(1) Sigma(+)(g) state interacts strongly with the X(3)Sigma(-)(g) g ground state by a second-order spin-orbit interaction, giving rise to the (1)0(g)(+) (ground state) (dominated by the X(3)Sigma(-)(g) Lambda - S ground state) and (9)0(g)(+) (dominated by the a(1) Sigma(+)(g) Lambda - S state) Omega states. These results are in line with those reported for the group 5B homonuclear transition metal diatomics. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1306-1315, 2011

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three novel acetato-bridged dinuclear copper(II) complexes with 5-nitroimidazoles (CuAcNtrim) and the known copper-acetato-metronidazole have been prepared by an environment-friendly route and spectroscopically characterized. The CuAcNtrim compounds of formula [Cu(2)(mu-O(2)CCH(3))(4)Ntrim(2)], where Ntrim = metronidazole (1), secnidazole (2), tinidazole (3) or nimorazole (4), exhibit dimeric copper-acetato paddle-wheel structures with Ntrim axial ligands coordinated to copper(II) ions through the N(3) atoms of the imidazole rings. EPR data indicate antiferromagnetic behavior for this novel series of copper complexes. The constant coupling has been found to decrease along with the increasing of basicity of the Ntrim axial ligand. The CuAcNtrim complexes and the correspondent Ntrim parent drugs have shown radiosensitizer properties for Hep2 (human larynx cancer) cell line in vitro. The best enhancement of radiosensitizer activity upon coordination of the Ntrim drug to copper(II) has been found for the nimorazole compound which has the strongest Cu-Ntrim bond and exhibits the highest lipophilicity within the series of CuAcNtrim complexes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H(2)dhp), or 3-hydroxy-2(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)(2)] complex in DMF are: g(x) = 1.9768, g(y) = 1.9768 and g(z) = 1.9390; A values (10(-4) cm(-1)): A(x), 59.4; A(y//), 59.4; A(z), 171.0. The vV=O band in the IR spectrum of the complex is at 986 cm(-1). The complex is paramagnetic, with mu(eff) = 1.65 BM (d(1), spin-only) at 25 degrees C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)(2)] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)(2)] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)(2)] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)(2)] administered were effective in reducing experimental diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 1952, Dwyer and coworkers began testing a series of metal complexes for potential inhibition of cancer cell proliferation in animals.[l] The complexes tested were unsuitable for such studies due to their high toxicity. Therefore, no further work was done on the project. However, in 1965, Rosenberg and coworkers revisited the possibility of potential metal-based drugs. Serendipitously, they discovered that cis-diamminedichloroplatinum(lI) (cisplatin) inhibits cell division in E. coli.[2] Further studies of this and other platinum compounds revealed inhibition of tumor cell lines sarcoma 180 and leukemia LI2l0 in mice.[l] Cisplatin was approved by the Food and Drug Administration in 1970 as a chemical chemotherapeutic agent in the treatment of cancer. The drug has primarily been used in the treatment of testicular and ovarian cancers, although the powerful chemotherapeutic properties of the compound indicate use against a variety of other cancers.[3] The toxicity of this compound, however, warrants the development of other metal-based potential antitumor agents. The success of cisplatin, a transition-metal-based chemotherapeutic, opened the doors to a host of research on the antitumor effects of other transition-metal complexes. Beginning in the 1970s, researchers looked to rhodium for potential use in antitumor complexes. Dirhodium complexes with bridging equatorial ligands (Figure I) were the primary focus for this research. The overwhelming majority of these complexes were dirhodium(II) carboxylate complexes, containing two rhodium(II) centers, four equatorial ligands in a lantero formation around the metal center, and an axial ligand on either end. The family of complexes in Figure 1 will be referred to as dirhodium(II) carboxylate complexes. The dirhodium centers are each d? with a metal-metal bond between them. Although d? atoms are paramagnetic, the two unpaired electrons pair to make the complex diamagnetic. The basic formula of the dirhodium(lI) carboxylate complexes is Rh?(RCOO)?(L)? with R being methyl, ethyl, propyl, or butyl groups and L being water or the solvent in which the complex was crystalized. Of these dirbodium(II) carboxylate complexes, our research focuses on Rb la and two other similar complexes Rh2 and Rh3 (Figure 2). Rh2 is an activated form of Rhla, with four acetonitrile groups in place of two of the bidentate acetate ligands. Rh3 is similar to Rhla, with trifluoromethyl groups in place of the methyl groups on the acetate ligands.