233 resultados para TPD
Resumo:
Pós-graduação em Filosofia - FFC
Resumo:
O presente trabalho visa investigar o Processo de Craqueamento Termocatalítico do Óleo de Buriti (Mauritia flexuosa L.), óleo de palma (Elaeis guineensis) e sabão de óleo de buriti, considerando a transformação dos óleos vegetais e sabões via craqueamento termocatalítico em biocombustíveis, utilizando-se Na2CO3 (Carbonato de Sódio), CaCO3 (Carbonato de Cálcio),CaO (óxido de cálcio) e Zeólitas Ácidas (HZSM-5) como catalisadores,as temperaturas de 420, 450 e 480 °C.O fruto de Buriti (Mauritia flexuosa L.) foi coletado e extraído óleo da polpa, em seguida este óleo foi caracterizado em relação Índice de Acidez, Índice de saponificação, Viscosidade Cinemática, Densidade , Índice de Refração e análise de CHN.Para testes preliminares foi utilizado o óleo de palma refinado e neutralizado portanto eles não foram caracterizados.O sabão de buriti foi preparado em laboratório com hidróxido de potássio e hidróxido de sódio e armazenados para pirólise térmica.Os catalisadores também foram caracterizados com relação ao infravermelho,Ressonância Magnética Nuclear de 29Si e 27Al, difração de raio X ,análise térmica, análise química e TPD de Amônia .No processo de craqueamento termocatalítico os produtos líquidos produzidos foram analisados quanto aos parâmetros: rendimento, índice de acidez, espectro de infravermelho, espectro de RMN e análise de CHN em seguida foram caracterizados com relação à densidade e viscosidade cinemática. No entanto, com relação ao índice de acidez dos produtos líquidos, somente os catalisadores básicos produziram craqueados com valores aceitáveis para utilização como combustível. A partir dos resultados verificou-se a eficiência dos catalisadores no qual o catalisador carbonato de sódio forneceu produtos de baixa acidez e com boas características para uso como combustível.
Resumo:
Pós-graduação em Fonoaudiologia - FFC
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work shows the luminescence properties of a rare-earth organic complex, the Tb(ACAC)(3)phen. The results show the (5)D(4)->(7)F(3,4,5,6) transitions with no influence of the ligand. The photoluminescence excitation spectrum is tentatively interpreted by the ligands absorption. An organic light emitting diode (CLED) was made by thermal evaporation using TPD (N,N`-bis(3-methylphenyl)N,N`-diphenylbenzidine) and Alq3 (aluminum-tris(8-hydroxyquinoline)) as hole and electron transport layers, respectively. The emission reproduces the photoluminescence spectrum of the terbium complex at room temperature, with Commission Internationale de l`Eclairage - CIE (x,y) color coordinates of (0.28,0.55). No presence of any bands from the ligands was observed. The potential use of this compound in efficient devices is discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Abbiamo studiato una nuova classe di catalizzatori per la sintesi di biodiesel mediante transesterificazione di trigliceridi in fase liquida con metanolo. Si sono preparate diverse serie di catalizzatori rispettivamente a base di magnesio ossido e idrotalcite dispersi su allumina commerciale mesoporosa. Partendo dai medesimi precursori ottenuti tramite wet-impregnation dell’allumina con soluzioni di magnesio metossido, si sono poi seguiti differenti metodi di calcinazione. Per la creazione della fase idrotalcite si è sfruttato un processo idrotermale di dealluminazione, comunemente impiegato nella sintesi delle zeoliti. Gli spettri XRD e le analisi TPD con biossido di carbonio confermano l’avvenuta formazione delle fasi ricercate. Il confronto tra il rapporto Mg/Al superficiale (ottenuto da analisi XPS) e bulk (ottenuto da analisi SEM/EDX) suggeriscono che la formazione della fase idrotalcite è dovuta ad una reazione allo stato solido avvenuta a seguito del trattamento dei campioni con vapore ad alta temperatura. Tutti i materiali preparati si sono dimostrati essere catalizzatori attivi per la transesterificazione in fase liquida del tributirrato e del triottanoato (molecole modello per la sintesi del biodiesel) con metanolo. I catalizzatori a base di idrotalcite hanno dimostrato le migliori proprietà catalitiche.
Resumo:
In this thesis, anodic aluminum oxide (AAO) membranes, which provide well-aligned uniform mesoscopic pores with adjustable pore parameters, were fabricated and successfully utilized as templates for the fabrication of functional organic nanowires, nanorods and the respective well-ordered arrays. The template-assisted patterning technique was successfully applied for the realization of different objectives:rnHigh-density and well-ordered arrays of hole-conducting nanorods composed of cross-linked triphenylamine (TPA) and tetraphenylbenzidine (TPD) derivatives on conductive substrates like ITO/glass have been successfully fabricated. By applying a freeze-drying technique to remove the aqueous medium after the wet-chemical etching of the template, aggregation and collapsing of the rods was prevented and macroscopic areas of perfectly freestanding nanorods were feasible. Based on the hole-conducting nanorod arrays and their subsequent embedding into an electron-conducting polymer matrix via spin-coating, a novel routine concept for the fabrication of well-ordered all-organic bulk heterojunction for organic photovoltaic applications was successfully demonstrated. The increased donor/acceptor interface of the fabricated devices resulted in a remarkable increase of the photoluminescence quenching compared to a planar bilayer morphology. Further, the fundamental working principle of the templating approach for the solution-based all-organic photovoltaic device was demonstrated for the first time.rnFurthermore, in order to broaden the applicability of patterned surfaces, which are feasible via the template-based patterning of functional materials, AAO with hierarchically branched pores were fabricated and utilized as templates. By pursuing the common templating process hierarchically polymeric replicas, which show remarkable similarities with interesting biostructures, like the surface of the lotus leaf and the feet of a gecko, were successfully prepared.rnIn contrast to the direct infiltration of organic functional materials, a novel route for the fabrication of functional nanowires via post-modification of reactive nanowires was established. Therefore, reactive nanowires based on cross-linked pentafluorophenylesters were fabricated by utilizing AAO templates. The post-modification with fluorescent dyes was demonstrated. Furthermore, reactive wires were converted into well-dispersed poly(N-isopropylacrylamide) (PNIPAM) hydrogels, which exhibit a thermal-responsive reversible phase transition. The reversible thermal-responsible swelling of the PNIPAM nanowires exhibited a more than 50 % extended length than in the collapsed PNIPAM state. rnLast but not least, the shape-anisotropic pores of AAO were utilized to uniformly align the mesogens of a nematic liquid crystalline elastomer. Liquid crystalline nanowires with a narrow size distribution and uniform orientation of the liquid crystalline material were fabricated. It was shown that during the transition from the nematic to the isotropic phase the rod’s length shortened by roughly 40 percent. As such these liquid crystalline elastomeric nanowires may find application, as wire-shaped nanoactuators in various fields of research, like lab-on-chip systems, micro fluidics and biomimetics.rn
Resumo:
Global warming issue becomes more significant to human beings and other organisms on the earth. Among many greenhouse gases, carbon dioxide (CO2) has the largest contribution to global warming. To find an effective way to utilize the greenhouse gas is urgent. It is the best way to convert CO2 to useful compounds. CO2 reforming of methane is an attractive process to convert CO2 and methane into synthesis gas (CO/H2), which can be used as a feedstock for gasoline, methanol, and other hydrocarbons. Nickel and cobalt were found to have good activity for CO2 reforming. However, they have a poor stability due to carbon deposition. This research developed efficient Ni-Co solid solution catalysts with excellent activities and high stability for CO2 reforming of methane. First, the structure of binary oxide solid solution of nickel and cobalt was investigated. It was found that while the calcination of Ni(NO3)2 and Co(NO3)2 mixture with 1:1 molar ratio at a high temperature above 800 oC generated NiO-CoO solid solution, only Ni3O4-Co3O4 solid solution was observed after the calcination at a low temperature of 500 oC. Furthermore, if the calcination was carried out at a medium temperature arranged from 600 to 700 oC, both NiO-CoO and Ni3O4-Co3O4 solid solutions can be formed. This occurred because Co3O4 can induce the formation of Ni3O4, whereas NiO can stabilize CoO. In addition, the lattice parameter of Ni3O4, which was predicted by using Vegard’s Law, is 8.2054 Å. As a very important part of this dissertation, Ni-Co solid solution was evaluated as catalysts for CO2 reforming of methane. It was revealed that nickel-cobalt solid solution showed excellent catalytic performance and high stability for CO2 reforming of methane. However, the stability of Ni-Co solid solution catalysts is strongly dependent on their composition and preparation condition. The optimum composition is 50%Ni-50%Co. Furthermore, the structure of Ni-Co catalysts was characterized by XRD, Vvis, TPR, TPD, BET, AES, TEM, XANES and EXAFS. The relationship between the structure and the catalytic performance was established: (1) The reduced NiO-CoO solid solution possesses better catalytic performance and stability than the reduced Ni3O4-Co3O4 solid solution. (2) Ni is richer on surface in Ni-Co catalysts. And (3) the reduction of Ni-Co-O solid solution generated two types of particles, small and large particles. The small ones are dispersed on large ones as catalytic component.
Resumo:
Traditional transportation fuel, petroleum, is limited and nonrenewable, and it also causes pollutions. Hydrogen is considered one of the best alternative fuels for transportation. The key issue for using hydrogen as fuel for transportation is hydrogen storage. Lithium nitride (Li3N) is an important material which can be used for hydrogen storage. The decompositions of lithium amide (LiNH2) and lithium imide (Li2NH) are important steps for hydrogen storage in Li3N. The effect of anions (e.g. Cl-) on the decomposition of LiNH2 has never been studied. Li3N can react with LiBr to form lithium nitride bromide Li13N4Br which has been proposed as solid electrolyte for batteries. The decompositions of LiNH2 and Li2NH with and without promoter were investigated by using temperature programmed decomposition (TPD) and X-ray diffraction (XRD) techniques. It was found that the decomposition of LiNH2 produced Li2NH and NH3 via two steps: LiNH2 into a stable intermediate species (Li1.5NH1.5) and then into Li2NH. The decomposition of Li2NH produced Li, N2 and H2 via two steps: Li2NH into an intermediate species --- Li4NH and then into Li. The kinetic analysis of Li2NH decomposition showed that the activation energies are 533.6 kJ/mol for the first step and 754.2 kJ/mol for the second step. Furthermore, XRD demonstrated that the Li4NH, which was generated in the decomposition of Li2NH, formed a solid solution with Li2NH. In the solid solution, Li4NH possesses a similar cubic structure as Li2NH. The lattice parameter of the cubic Li4NH is 0.5033nm. The decompositions of LiNH2 and Li2NH can be promoted by chloride ion (Cl-). The introduction of Cl- into LiNH2 resulted in the generation of a new NH3 peak at low temperature of 250 °C besides the original NH3 peak at 330 °C in TPD profiles. Furthermore, Cl- can decrease the decomposition temperature of Li2NH by about 110 °C. The degradation of Li3N was systematically investigated with techniques of XRD, Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. It was found that O2 could not affect Li3N at room temperature. However, H2O in air can cause the degradation of Li3N due to the reaction between H2O and Li3N to LiOH. The produced LiOH can further react with CO2 in air to Li2CO3 at room temperature. Furthermore, it was revealed that Alfa-Li3N is more stable in air than Beta-Li3N. The chemical stability of Li13N4Br in air has been investigated by XRD, TPD-MS, and UV-vis absorption as a function of time. The aging process finally leads to the degradation of the Li13N4Br into Li2CO3, lithium bromite (LiBrO2) and the release of gaseous NH3. The reaction order n = 2.43 is the best fitting for the Li13N4Br degradation in air reaction. Li13N4Br energy gap was calculated to be 2.61 eV.
Resumo:
Concentrations of dissolved (<0.2 µm) Fe (DFe) in the Arctic shelf seas and in the surface waters of the central Arctic Ocean are presented. In the Barents and Kara seas, near-surface DFe minima indicate depletion of DFe by phytoplankton growth. Below the surface, lower DFe concentrations in the Kara Sea (~0.4-0.6 nM) than in the Barents Sea (~0.6-0.8 nM) likely reflect scavenging removal or biological depletion of DFe. Very high DFe concentrations (>10 nM) in the bottom waters of the Laptev Sea shelf may be attributed to either sediment resuspension, sinking of brine or regeneration of DFe in the lower layers. A significant correlation (R2 = 0.60) between salinity and DFe is observed. Using d18O, salinity, nutrients and total alkalinity data, the main source for the high (>2 nM) DFe concentrations in the Amundsen and Makarov Basins is identified as (Eurasian) river water, transported with the Transpolar Drift (TPD). On the North American side of the TPD, the DFe concentrations are low (<0.8 nM) and variations are determined by the effects of sea-ice meltwater, biological depletion and remineralization and scavenging in halocline waters from the shelf. This distribution pattern of DFe is also supported by the ratio between unfiltered and dissolved Fe (high (>4) above the shelf and low (<4) off the shelf).
Resumo:
We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.
Resumo:
The electronic gap structure of the organic molecule N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, also known as TPD, has been studied by means of a Scanning Tunneling Microscope (STM) and by Photoluminescence (PL) analysis. Hundreds of current-voltage characteristics measured at different spots of the sample show the typical behavior of a semiconductor. The analysis of the curves allows to construct a gap distribution histogram which reassembles the PL spectrum of this compound. This analysis demonstrates that STM can give relevant information, not only related to the expected value of a semiconductor gap but also on its distribution which affects its physical properties such as its PL.
Resumo:
A key target to reduce current hydrocarbon emissions from vehicular exhaust is to improve their abatement under cold-start conditions. Herein, we demonstrate the potential of factorial analysis to design a highly efficient catalytic trap. The impact of the synthesis conditions on the preparation of copper-loaded ZSM-5 is clearly revealed by XRD, N2 sorption, FTIR, NH3-TPD, SEM and TEM. A high concentration of copper nitrate precursor in the synthesis improves the removal of hydrocarbons, providing both strong adsorption sites for hydrocarbon retention at low temperature and copper oxide nanoparticles for full hydrocarbon catalytic combustion at high temperature. The use of copper acetate precursor leads to a more homogeneous dispersion of copper oxide nanoparticles also providing enough catalytic sites for the total oxidation of hydrocarbons released from the adsorption sites, although lower copper loadings are achieved. Thus, synthesis conditions leading to high copper loadings jointly with highly dispersed copper oxide nanoparticles would result in an exceptional catalytic trap able to reach superior hydrocarbon abatement under highly demanding operational conditions.