994 resultados para TIDAL VOLUME
Resumo:
Objective: To investigate the effect of standing with assistance of the tilt table on ventilatory parameters and arterial blood gases in intensive care patients. Design: Consecutive sample. Setting: Tertiary referral hospital. Participants: Fifteen adult patients who had been intubated and mechanically ventilated for more than 5 days (3 subjects successfully weaned, 12 subjects being weaned). Intervention: Passive tilting to 70degrees from the horizontal for 5 minutes using a tilt table. Main Outcome Measures: Minute ventilation (VE), tidal volume (VT), respiratory rate, and arterial partial pressure of oxygen (Pao(2)) and carbon dioxide (Paco(2)). Results: Standing in the tilted position for 5 minutes produced significant increases in VE (P
Resumo:
Background and objective: There are no data about the influence of anaesthetics on cardiovascular variables during pressure support ventilation of the lungs through the laryngeal mask airway. We compared propofol, sevoflurane and isoflurane for maintenance of anaesthesia with the ProSeal (R) laryngeal mask airway during pressure support ventilation. Methods: Sixty healthy adults undergoing peripheral musculo-skeletal surgery were randomized for maintenance with sevoflurane end-tidal 29%, isoflurane end-tidal 1.1% or propofol 6 mg kg(-1) h(-1) in oxygen 33% and air. Pressure support ventilation comprised positive end-expiratory pressure set at 5 cmH(2)O, and pressure support set 5 cmH(2)O above positive end-expiratory pressure. Pressure support was initiated when inspiration produced a 2 cmH(2)O reduction in airway pressure. A blinded observer recorded cardiorespiratory variables (heart rate, mean blood pressure, oxygen saturation, air-way occlusion pressure, respiratory rate, expired tidal volume, expired minute volume and end-tidal CO2), adverse events and emergence times. Results: Respiratory rate and minute volume were 10-21% lower, and end-tidal CO2 6-11% higher with the propofol group compared with the sevoflurane or isoflurane groups, but otherwise cardiorespiratory variables were similar among groups. No adverse events occurred in any group. Emergence times were longer with the propofol group compared with the sevoflurane or isoflurane groups (10 vs. 7 vs. 7 min). Conclusion: Lung ventilation is less effective and emergence times are longer with propofol than sevoflurane or isoflurane for maintenance of anaesthesia during pressure support ventilation with the ProSeal (R) laryngeal mask airway. However, these differences are small and of doubtful clinical importance.
Resumo:
Passive tilting increases ventilation in healthy subjects; however, controversy surrounds the proposed mechanism. This study is aimed to evaluate the possible mechanism for changes to ventilation following passive head-up tilt (HUT) and active standing by comparison of a range of ventilatory, metabolic and mechanical parameters. Ventilatory parameters (V (T), V (E), V (E)/VO2, V (E)/VCO2, f and PetCO(2)), functional residual capacity (FRC), respiratory mechanics with impulse oscillometry; oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured in 20 healthy male subjects whilst supine, following HUT to 70 degrees and unsupported standing. Data were analysed using a linear mixed model. HUT to 70 degrees from supine increased minute ventilation (V (E)) (P < 0.001), tidal volume (V (T)) (P=0.001), ventilatory equivalent for O-2 (V (E)/VO2) (P=0.020) and the ventilatory equivalent for CO2 (V (E)/VCO2) (P < 0.001) with no change in f (P=0.488). HUT also increased FRC (P < 0.001) and respiratory system reactance (X5Hz) (P < 0.001) with reduced respiratory system resistance (R5Hz) (P=0.004) and end-tidal carbon dioxide (PetCO(2)) (P < 0.001) compared to supine. Standing increased V (E) (P < 0.001), V (T) (P < 0.001) and V (E)/VCO2 (P=0.020) with no change in respiratory rate (f) (P=0.065), V (E)/VO2 (P=0.543). Similar changes in FRC (P < 0.001), R5Hz (P=0.013), X5Hz (P < 0.001) and PetCO(2) (P < 0.001) compared to HUT were found. In contrast to HUT, standing increased VO2 (P=0.002) and VCO2 (P=0.048). The greater increase in V (E) in standing compared to HUT appears to be related to increased VO2 and VCO2 associated with increased muscle activity in the unsupported standing position. This has implications for exercise prescription and rehabilitation of critically ill patients who have reduced cardiovascular and respiratory reserve.
Resumo:
This study investigated the effect of sleep position on breathing patterns of normal full term infants during quiet and active behavioral sleep states. Tidal volume, percent contribution of rib cage to tidal volume, and respiration rate were measured via respiratory inductive plethysmography (RIP) and pneumotachograph (PNT) in ten infants sleeping in supine versus right side-lying. Data was collected immediately following two consecutive feedings. Paired t tests and ANOVA comparisons showed no significant differences between the two postures (p $<$.05) in mean tidal volume (supine, M = 19.16, right side, M = 22.45), percent contribution of rib cage to tidal volume (supine, M = 30.55, right side M = 33.20), or respiration rate (supine, M = 49.13, right side, M = 49.37) during quiet sleep. Comparisons also showed no significant differences between the two postures (p $<$.05) in mean tidal volume (supine, M = 18.89, right side, M = 20.12), percent contribution of rib cage to tidal volume (supine, M = 6.43, right side, M = 6.97) or respiration rate (supine, M = 62.18, right side, M = 61.04) during active sleep. Therefore, no differences were found in the three respiratory variables measured between the supine and right side-lying positions. These findings suggest that infants may be positioned in either sleep position without detriment to respiratory function. This information may benefit occupational therapists and other health professionals involved in the education of parents on infant positioning and their respective advantages. ^
Resumo:
This study evaluated the spirometry and respiratory static pressures in 17 young women, twice a week for three successive ovulatory menstrual cycles to determine if such variables changed across the menstrual, follicular, periovulatory, early-tomid luteal and late luteal phases. The factors phases of menstrual cycle and individual cycles had no significant effect on the spirometry variables except for peak expiratory flow (PEF) and respiratory static pressures. Significant weak positive correlations were found between the progesterone:estradiol ratio and PEF and between estrogen and tidal volume (r = 0.37), inspiratory time (r = 0.22), expiratory time (r = 0.19), maximal inspiratory pressure (r = 0.25) and maximal expiratory pressure (r = 0.20) and for progesterone and maximal inspiratory pressure (r = 0.32) during the early-to-mid luteal phase. Although most parameters of the spirometry results did not change during the menstrual cycle, the correlations observed between sexual hormones and respiratory control variables suggest a positive influence of sexual female hormones controlling the thoracic pump muscles in the luteal phase
Resumo:
This study evaluated the spirometry and respiratory static pressures in 17 young women, twice a week for three successive ovulatory menstrual cycles to determine if such variables changed across the menstrual, follicular, periovulatory, early-tomid luteal and late luteal phases. The factors phases of menstrual cycle and individual cycles had no significant effect on the spirometry variables except for peak expiratory flow (PEF) and respiratory static pressures. Significant weak positive correlations were found between the progesterone:estradiol ratio and PEF and between estrogen and tidal volume (r = 0.37), inspiratory time (r = 0.22), expiratory time (r = 0.19), maximal inspiratory pressure (r = 0.25) and maximal expiratory pressure (r = 0.20) and for progesterone and maximal inspiratory pressure (r = 0.32) during the early-to-mid luteal phase. Although most parameters of the spirometry results did not change during the menstrual cycle, the correlations observed between sexual hormones and respiratory control variables suggest a positive influence of sexual female hormones controlling the thoracic pump muscles in the luteal phase
Resumo:
Background. The value of respiratory variables as weaning predictors in the intensive care unit (ICU) is controversial. We evaluated the ability of tidal volume (Vtexp), respiratory rate ( f ), minute volume (MVexp), rapid shallow breathing index ( f/Vt), inspired–expired oxygen concentration difference [(I–E)O2], and end-tidal carbon dioxide concentration (PE′CO2) at the end of a weaning trial to predict early weaning outcomes. Methods. Seventy-three patients who required .24 h of mechanical ventilation were studied. A controlled pressure support weaning trial was undertaken until 5 cm H2O continuous positive airway pressure or predefined criteria were reached. The ability of data from the last 5 min of the trial to predict whether a predefined endpoint indicating discontinuation of ventilator support within the next 24 h was evaluated. Results. Pre-test probability for achieving the outcome was 44% in the cohort (n¼32). Non-achievers were older, had higher APACHE II and organ failure scores before the trial, and higher baseline arterial H+ concentrations. The Vt, MV, f, and f/Vt had no predictive power using a range of cut-off values or from receiver operating characteristic (ROC) analysis. The [I–E]O2 and PE′CO2 had weak discriminatory power [areaunder the ROC curve: [I–E]O2 0.64 (P¼0.03); PE′CO2 0.63 (P¼0.05)]. Using best cut-off values for [I–E]O2 of 5.6% and PE′CO2 of 5.1 kPa, positive and negative likelihood ratios were 2 and 0.5, respectively, which only changed the pre- to post-test probability by about 20%. Conclusions. In unselected ICU patients, respiratory variables predict early weaning from mechanical ventilation poorly.
Resumo:
The benefits of prone position ventilation are well demonstrated in the severe forms of acute respiratory distress syndrome, but not in the milder forms. We investigated the effects of prone position on arterial blood gases, lung inflammation, and histology in an experimental mild acute lung injury (ALI) model. ALI was induced in Wistar rats by intraperitoneal Escherichia coli lipopolysaccharide (LPS, 5 mg/kg). After 24 h, the animals with PaO2/FIO2 between 200 and 300 mmHg were randomized into 2 groups: prone position (n = 6) and supine position (n = 6). Both groups were compared with a control group (n = 5) that was ventilated in the supine position. All of the groups were ventilated for 1 h with volume-controlled ventilation mode (tidal volume = 6 ml/kg, respiratory rate = 80 breaths/min, positive end-expiratory pressure = 5 cmH2O, inspired oxygen fraction = 1). Significantly higher lung injury scores were observed in the LPS-supine group compared to the LPS-prone and control groups (0.32 ± 0.03; 0.17 ± 0.03 and 0.13 ± 0.04, respectively) (p < 0.001), mainly due to a higher neutrophil infiltration level in the interstitial space and more proteinaceous debris that filled the airspaces. Similar differences were observed when the gravity-dependent lung regions and non-dependent lung regions were analyzed separately (p < 0.05). The BAL neutrophil content was also higher in the LPS-supine group compared to the LPS-prone and control groups (p < 0.05). There were no significant differences in the wet/dry ratio and gas exchange levels. In this experimental extrapulmonary mild ALI model, prone position ventilation for 1 h, when compared with supine position ventilation, was associated with lower lung inflammation and injury.
Resumo:
Introducción La ventilación mecánica es fundamental en el manejo de la falla respiratoria aguda, actualmente no existe consenso sobre el momento exacto de extubación. Este estudio describe el comportamiento de la escala OMAHA+ en nuestra institución. Objetivo Principal Describir los desenlaces clínicos relacionados con la escala OMAHA+ durante la extubación de los pacientes de las unidades de cuidado intensivo del hospital universitario. Métodos Estudio descriptivo, retrospectivo, basado en el registro de la escala OMAHA+ de 68 pacientes durante el proceso de extubación en las Unidades de cuidado intensivo adulto de la Fundación Santa Fe de Bogotá durante Agosto de 2014 a Mayo de 2015. Resultados Se encontraron valores gasométricos cercanos a la normalidad, con una PaO2/FiO2 media de 261 (DS 60,6), SaO2 media de 96% (DS 2%), media de lactato sérico de 1.5 mmol/L (DS 1,2 mmol/L), con signos vitales normales. La causa más común de ingreso a UCI fue Neumonía, seguida por cirugía cardiaca y abdominal. Las medias de parámetros ventilatorios al momento de extubación fueron; PEEP de 6 (DS 0,8), volumen corriente de 8ml/Kg (DS 1,4 ml/Kg), índice de Tobín de 34 (DS 11,9), test de fuga positivo 94%, y sólo una extubación fallida. Conclusiones La escala OMAHA+ puede ser una herramienta útil, aplicable y fácilmente reproducible en los pacientes con soporte ventilatorio mecánico invasivo previo al proceso de extubación, con baja proporción de fallo. Estos resultados deben ser evaluados en estudios prospectivos.
Resumo:
INTRODUCTION: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous electromyography of respiratory muscles (rEMG) in matched comparison to lung function measurements. METHODS: After determining feasibility and repeatability of rEMG in 20 spontaneously sleeping healthy neonates, we measured the relative impact of intercostal and diaphragmatic EMG activity in direct comparison to the resulting tidal flow and FRC. RESULTS: We found good feasibility, repeatability and correlation of timing indices between rEMG activity and flow. The rEMG amplitude was significantly dependent on the resistive load of the face mask. Diaphragm and intercostal muscle activity commenced prior to the onset of flow and remained active during the expiratory cycle. The relative contribution of intercostal and diaphragmatic activity to flow was variable and changed dynamically. CONCLUSION: Using matched rEMG, air flow and lung volume measurements, we have found good feasibility and repeatability of intercostal and diaphragm rEMG measurements and provide the first quantitative measures of the temporal relationship between muscle activity and flow in spontaneously sleeping healthy neonates. Lung mechanical function is dynamically regulated and adapts on a breath to breath basis. So, non-invasive rEMG measurements alone or in combination with lung function might provide a more comprehensive picture of pulmonary mechanics in future studies. The data describing the timing of EMG and flow may be important for future studies of EMG triggered mechanical ventilation.
Resumo:
Final report.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
Although numerous field studies have evaluated flow and transport processes in salt marsh channels, the overall role of channels in delivering and removing material from salt marsh platforms is still poorly characterised. In this paper, we consider this issue based on a numerical hydrodynamic model for a prototype marsh system and on a field survey of the cross-sectional geometry of a marsh channel network. Results of the numerical simulations indicate that the channel transfers approximately three times the volume of water that would be estimated from mass balance considerations alone. Marsh platform roughness exerts a significant influence on the partitioning of discharge between the channel and the marsh platform edge, alters flow patterns on the marsh platform due to its effects on channel-to-platform transfer and also controls the timing of peak discharge relative to marsh-edge overtopping. Although peak channel discharges and velocities are associated with the flood tide and marsh inundation, a larger volume of water is transferred by the channel during ebb flows, a portion of which transfer takes place after the tidal height is below the marsh platform. Detailed surveys of the marsh channels crossing a series of transects at Upper Stiffkey Marsh, north Norfolk, England, show that the total channel cross-sectional area increases linearly with catchment area in the inner part of the marsh, which is consistent with the increase in shoreward tidal prism removed by the channels. Toward the marsh edge, however, a deficit in the total cross-sectional area develops, suggesting that discharge partitioning between the marsh channels and the marsh platform edge may also be expressed in the morphology of marsh channel systems.
Resumo:
We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss.