993 resultados para TICKS ACARI
Resumo:
Abstract Background Considering the fact that the dog tick, Rhipicephalus sanguineus, has a great potential to become the vector of Brazilian Spotted Fever (BSF) for humans, the present study aimed to describe the distribution of the bacterium Rickettsia rickettsii, the etiological agent of BSF, in different regions of the ovaries of R. sanguineus using histological techniques. The ovaries were obtained from positive females confirmed by the hemolymph test and fed in the nymph stage on guinea pigs inoculated with R. rickettsii. Results The results showed a general distribution of R. rickettsii in the ovary cells, being found in oocytes in all stages of development (I, II, III, IV and V) most commonly in the periphery of the oocyte and also in the cytoplasm of pedicel cells. Conclusions The histological analysis of the ovaries of R. sanguineus infected females confirmed the presence of the bacterium, indicating that the infection can interfere negatively in the process of reproduction of the ticks, once alterations were detected both in the shape and cell structure of the oocytes which contained bacteria.
Resumo:
By the end of the 1960s, the argasid tick Ornithodoros peropteryx was described from larval specimens collected from the bat Peropteryx macrotis in Colombia. Since its original description, no additional record of O. peropteryx has been reported, and its post-larval stages have remained unknown. During July 2010, 18 larvae were collected from 9 bats (Centronycteris maximiliani), resulting in a mean infestation of 2.0 ± 2.2 ticks per bat (range 1–8). These bats were captured in a farm in northeastern Bolivia close to Guaporé River in the border with Brazil. Morphological examinations of the larvae revealed them to represent the species O. peropteryx. One engorged larva that was kept alive in the laboratory moulted to a nymph after 9 days. Fourteen days after the larval moulting, the nymph moulted to an adult female without taking any blood meal during the nymphal period. This adult female was used for a morphological description of the female stage of O. peropteryx. In addition, the larvae were used for a morphological redescription of this stage. One larva and two legs extirpated from the adult female were submitted to DNA extraction and PCR targeting a fragment of the mitochondrial 16S rDNA gene, which yielded DNA sequences at least 11 % divergent from any available argasid sequence in Genbank. We show that O. peropteryx ontogeny is characterized by a single, non-feeding, nymphal stage. This condition has never been reported for ticks.
Resumo:
By the end of the 1960s, the argasid tick Ornithodoros peropteryx was described from larval specimens collected from the bat Peropteryx macrotis in Colombia. Since its original description, no additional record of O. peropteryx has been reported, and its post-larval stages have remained unknown. During July 2010, 18 larvae were collected from 9 bats (Centronycteris maximiliani), resulting in a mean infestation of 2.0 ± 2.2 ticks per bat (range 1–8). These bats were captured in a farm in northeastern Bolivia close to Guapore´ River in the border with Brazil. Morphological examinations of the larvae revealed them to represent the species O. peropteryx. One engorged larva that was kept alive in the laboratory moulted to a nymph after 9 days. Fourteen days after the larval moulting, the nymph moulted to an adult female without taking any blood meal during the nymphal period. This adult female was used for a morphological description of the female stage of O. peropteryx. In addition, the larvae were used for a morphological redescription of this stage. One larva and two legs extirpated from the adult female were submitted to DNA extraction and PCR targeting a fragment of the mitochondrial 16S rDNA gene, which yielded DNA sequences at least 11 % divergent from any available argasid sequence in Genbank. We show that O. peropteryx ontogeny is characterized by a single, non-feeding, nymphal stage. This condition has never been reported for ticks.
Resumo:
The bat tick Ornithodoros mimon Kohls, Clifford & Jones is currently known by only few reports in Bolivia, Uruguay, Argentina, and the state of São Paulo in southeastern Brazil. Here, we expand the distribution of O. mimon in Brazil to the states of Minas Gerais (southeastern region), Goiás (central-western), Pernambuco, and Rio Grande do Norte (northeastern). Ticks were collected on human dwellings, where there had been repeated complains of tick bites on persons during the night. Tick bites were generally followed by intense inflammatory reactions that lasted for several weeks at the bite site. Bats and opossums were reported to inhabit the attic of the infested houses. In addition, a free-ranging opossum (Didelphis albiventris Lund) trapped in Rio Grande do Norte was found infested by argasid larvae. Based on morphological and/or molecular analysis, all ticks were identified as O. mimon. From one of the sites (Tiradentes, state of Minas Gerais), 20 field-collected nymphs were tested by a battery of polymerase chain reaction protocols targeting tick-borne microorganisms of the genera Babesia, Hepatozoon, Rickettsia, Borrelia, Anaplasma, Ehrlichia, and Coxiella; no tick specimen was found infected by any of these microorganism genera. The current study expands northwards the distribution of O. mimon, which has been shown to be very harmful to humans because of the intense inflammatory response that usually occurs after tick bites.
Resumo:
There are two major groups of ticks: soft ticks and hard ticks. The hard ticks comprise the prostriate ticks and the metastriate ticks. The mitochondrial (mt) genomes of one species of prostriate tick and two species of metastriate ticks had been sequenced prior to our study. The prostriate tick has the ancestral arrangement of mt genes of arthropods, whereas the two metastriate ticks have rearrangements of eight genes and duplicate control regions. However, the arrangement of genes in the mt genomes of soft ticks had not been studied. We sequenced the mt genomes of two species of soft ticks, Carios capensis and Ornithodoros moubata, and a metastriate tick, Haemaphysalis flava. We found that the soft ticks have the ancestral arrangement of mt genes of arthropods, whereas the metastriate tick, H. flava, shares the rearrangements of mt genes and duplicate control regions with the other two metastriate ticks that have previously been studied. Our study indicates that gene rearrangements and duplicate control regions in mt genomes occurred once in the most recent common ancestor of metastriate ticks, whereas the ancestral arrangement of arthropods has remained unchanged for over 400 million years in the lineages leading to the soft ticks and the prostriate ticks.
Resumo:
In recent years there has been much progress in our understanding of the phylogeny and evolution of ticks, in particular the hard ticks (Ixodidae). Indeed, a consensus about the phylogeny of the hard ticks has emerged which is quite different to the working hypothesis of 10 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent or have been made. One subfamily, the Hyalomminae, should be sunk, while another, the Bothriocrotoninae, has been created (Klompen, Dobson & Barker, 2002). Bothriocrotoninae, and its sole genus Bothriocroton, have been created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma. The remaining species of the genus Aponomma have been moved to the genus Amblyomma. Thus, the name Aponomma is no longer a valid genus name. The genus Rhipicephalus is paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus has become a subgenus of the genus Rhipicephalus (Murrell & Barker, 2003). Knowledge of the phylogenetic relationships of ticks has also provided new insights into the evolution of ornateness and of their life cycles, and has allowed the historical zoogeography of ticks to be studied. Finally, we present a list of the 899 valid genus and species names of ticks as of February 2004.
Resumo:
The saliva of ticks (Suborder Ixodida) is critical to their survival as parasites. A tick bite should result in strong responses from the host defence systems (haemostatic, immune and inflammatory) but tick saliva appears to have evolved to counter these responses. We review current knowledge of tick saliva components, with emphasis on those molecules confirmed to be present in the secreted saliva but including some that have only been confirmed to be present in salivary glands. About 50 tick saliva proteins that are well described in the literature are discussed. These saliva components include enzymes, enzyme inhibitors, amine-binding proteins and cytokine homologues that act as anti-haemostatic, anti-inflammatory or immuno-modulatory agents. Sequence comparisons are illustrated. The importance of tick saliva and the significance of the findings to date are also discussed. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximate to 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microphis, and the B. microphis-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Resumo:
This study investigated the epidemiology of canine ehrlichiosis in Northeastern Brazil, focusing the identification of the Ehrlichia species and vectors involved. Samples were collected from 472 domestic dogs residing in the health districts of Cajazeiras and Itapuã of Salvador city. The average prevalence of antibodies reactive to E. canis by immunofluorescent antibody test (IFAT) (titer > 1:80) was 35.6% (168/472). Blood samples from the E. canis-seropositive animals were tested by nested PCR in order to identify the Ehrlichia species responsible for the infection. Among the seropositives, 58 (34.5%) were found to be PCR-positive for E. canis. Ticks were found in 32 dogs. Nested-PCR analysis showed that 21.9% (7/32) of the Rhipicephalus sanguineus were infected by E. canis. In both dogs and Rhipicephalus sanguineus, nested-PCR for E. ewingii and E. chaffeensis was negative, with no amplification of DNA fragment.
Resumo:
INTRODUCTION: Spotted fevers are emerging zoonoses caused by Rickettsia species in the spotted fever group (SFG). Rickettsia rickettsii is the main etiologic agent of Brazilian spotted fever (BSF) and it is transmitted by Amblyomma spp. ticks. METHODS: The study aimed to investigate SFG rickettsiae in the Arthur Thomas Municipal Park in Londrina, PR, by collecting free-living ticks and ticks from capybaras and blood samples from personnel working in these areas. Samples from A. dubitatum and A. cajennense were submitted for PCR in pools to analyze the Rickettsia spp. gltA (citrate synthase gene). RESULTS: All the pools analyzed were negative. Human sera were tested by indirect immunofluorescence assay with R. rickettsii and R. parkeri as antigens. Among the 34 sera analyzed, seven (20.6%) were reactive for R. rickettsii: four of these had endpoint titers equal to 64, 2 titers were 128 and 1 titer was 256. None of the samples were reactive for R. parkeri. An epidemiological questionnaire was applied to the park staff, but no statistically significant associations were identified. CONCLUSIONS: The serological studies suggest the presence of Rickettsiae related to SFG that could be infecting the human population studied; however, analysis of the ticks collected was unable to determine which species may be involved in transmission to humans.
Resumo:
Bloodsucking parasites such as ticks have evolved a wide variety of immunomodulatory proteins that are secreted in their saliva, allowing them to feed for long periods of time without being detected by the host immune system. One possible strategy used by ticks to evade the host immune response is to produce proteins that selectively bind and neutralize the chemokines that normally recruit cells of the innate immune system that protect the host from parasites. We have identified distinct cDNAs encoding novel chemokine binding proteins (CHPBs), which we have termed Evasins, using an expression cloning approach. These CHBPs have unusually stringent chemokine selectivity, differentiating them from broader spectrum viral CHBPs. Evasin-1 binds to CCL3, CCL4, and CCL18; Evasin-3 binds to CXCL8 and CXCL1; and Evasin-4 binds to CCL5 and CCL11. We report the characterization of Evasin-1 and -3, which are unrelated in primary sequence and tertiary structure, and reveal novel folds. Administration of recombinant Evasin-1 and - 3 in animal models of disease demonstrates that they have potent antiinflammatory properties. These novel CHBPs designed by nature are even smaller than the recently described single-domain antibodies (Hollinger, P., and P. J. Hudson. 2005. Nat. Biotechnol. 23: 1126-1136), and may be therapeutically useful as novel antiinflammatory agents in the future.
Resumo:
Solitary bees of the genus Tetrapedia have a specific association with mites of the genus Roubikia (Chaetodactylidae). These mites are frequently found attached to active Tetrapedia bees. We quantified the number of mites on individuals of Tetrapedia diversipes Klug and examined the interaction between these species. Nests of T. diversipes were obtained from trap-nests placed in four localities in Sao Paulo, Brazil. The study lasted from March 2007 to February 2009. Out of a total of 650 nests with emergences, 118 were infested with mites (Roubikia sp.). From these nests, 176 individuals of T. diversipes emerged with mites on their bodies. Additionally, six individuals of Coelioxoides waltheriae, the specific kleptoparasitic bee to T. diversipes, emerged. Mites were attached mainly to the mesosoma. All nests infected with mites did not presented mortality of the immature. The mortality rate of nests was inversely related to the level of mite infestation, suggesting a mutualistic interaction in which mites may remove fungi from the nests, while the bees would provide the mites with transport, dispersal, and shelter.
Resumo:
We report the infestation of stingless bee nests by the mite Pyemotes tritici, which killed four colonies of Tetragonisca angustula and one colony of Frieseomelitta varia in Brazil. The first infected colony, a colony of T. angustula, came from an area between Uberlandia and Araguari, Minas Gerais. The transfer of the mites to the other colonies occurred through the transfer of infected combs and subsequent manipulations. Other colonies in the same meliponary, which had not been manipulated, were not infected. The infestation was terminated by isolating the dead colonies from the meliponary.
Resumo:
Background: The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America. Results: The results showed that the crosses between Australian and Argentinean or Mozambican strains of boophilid ticks are infertile while crosses between Argentinean and Mozambican strains are fertile. These results showed that tick strains from Africa (Mozambique) and America (Argentina) are the same species, while ticks from Australia may actually represent a separate species. The genetic analysis of mitochondrial 12S and 16S rDNA and microsatellite loci were not conclusive when taken separately, but provided evidence that Australian tick strains were genetically different from Asian, African and American strains. Conclusion: The results reported herein support the hypothesis that at least two different species share the name R. microplus. These species could be redefined as R. microplus (Canestrini, 1887) (for American and African strains) and probably the old R. australis Fuller, 1899 (for Australian strains), which needs to be redescribed. However, experiments with a larger number of tick strains from different geographic locations are needed to corroborate these results.
Resumo:
The present work evaluated rickettsial infection in dogs and their ticks in an area endemic for Brazilian spotted fever (BSF) in the metropolitan area of Sao Paulo, Brazil, where the tick Amblyomma aureolatum was presumed to be the vector of the disease. Ticks were collected on dogs from 185 houses, encompassing single infestations by Rhipicephalus sanguineus, Amblyomma aureolatum, Amblyomma longirostre, or Amblyomma sp. in dogs from 60 (32.4%), 77 (41.6%), 2 (1.1%), and 25 (13.5%) houses, respectively; 19 (10.3%) houses had dogs with mixed infestations by R. sanguineus and A. aureolatum; 1 (0.5%) house had dogs with infestations by A. aureolatum and A. longirostre; and 1 (0.5%) house had dogs with infestations by R. sanguineus and Amblyomma sp. Overall, A. aureolatum was present in dogs from 97 (52.4%) houses, and R. sanguineus in dogs from 80 (43.2%) houses. A total of 287 ticks (130 A. aureolatum and 157 R. sanguineus) infesting dogs from 98 houses were selected for testing by polymerase chain reaction (PCR) targeting rickettsial genes. Overall, 3.1% of the A. aureolatum ticks were infected by Rickettsia bellii, and 1.3% of the R. sanguineus were infected by Ricketttsii rickettsii. For serology, we selected 23 dogs living in and in the vicinity of the house where the R. rickettsii-infected ticks were collected. The indirect fluorescent antibody (IFA) test detected antibodies reactive with R. rickettsii in sera from 16 (69.6%) dogs, with titers ranging from 256 to 32,768. It is established that Amblyomma aureolatum is a vector of R. rickettsii in the Sao Paulo metropolitan area, but our results highlight for the first time in Brazil, a possible role of R. sanguineus in the epidemiology of R. rickettsii, corroborating previous findings in Mexico and the United States, where R. sanguineus has been implicated in the transmission of R. rickettsii to humans.