778 resultados para THERMOPLASTIC POLYURETHANE
Resumo:
Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^
Resumo:
The present study investigates the potential use of non-catalyzed water-soluble blocked polyurethane prepolymer (PUP) as a bifunctional cross-linker for collagenous scaffolds. The effect of concentration (5, 10, 15 and 20%), time (4, 6, 12 and 24 h), medium volume (50, 100, 200 and 300%) and pH (7.4, 8.2, 9 and 10) over stability, microstructure and tensile mechanical behavior of acellular pericardial matrix was studied. The cross-linking index increased up to 81% while the denaturation temperature increased up to 12 °C after PUP crosslinking. PUP-treated scaffold resisted the collagenase degradation (0.167 ± 0.14 mmol/g of liberated amine groups vs. 598 ± 60 mmol/g for non-cross-linked matrix). The collagen fiber network was coated with PUP while viscoelastic properties were altered after cross-linking. The treatment of the pericardial scaffold with PUP allows (i) different densities of cross-linking depending of the process parameters and (ii) tensile properties similar to glutaraldehyde method.
Resumo:
The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.
Resumo:
The objective of the present study is to develop fully renewable and environmentally benign techniques for improving the fire safety of flexible polyurethane foams (PUFs). A multilayered coating made from cationic chitosan (CS) and anionic alginate (AL) was deposited on PUFs through layer-by-layer assembly. This coating system exhibits a slight influence on the thermal stability of PUF, but significantly improves the char formation during combustion. Cone calorimetry reveals that 10 CS-AL bilayers (only 5.7% of the foams weight) lead to a 66% and 11% reduction in peak heat release rate and total heat release, respectively, compared with those of the uncoated control. The notable decreased fire hazards of PUF are attributed to the CS-AL coatings being beneficial to form an insulating protective layer on the surface of burning materials that inhibits the oxygen and heat permeation and slows down the flammable gases in the vapor phase, and thereby improves the flame resistance. This water-based, environmentally benign natural coating will stimulate further efforts in improving fire safety for a variety of polymer substrates.
Resumo:
Using inorganic fullerene-like (IF) nanoparticles and inorganic nanotubes (INT) in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1-4 wt.%) of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2) generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.
Resumo:
This article reviews recent literature on hierarchical thermoplastic-based composites that simultaneously incorporate carbon nanotubes (CNTs) and conventional microscale fibers, and discusses the structure?property relationships of the resulting hybrids. The mixing of multiple and multiscale constituents enables the preparation of materials with new or improved properties due to synergistic effects. By exploiting the outstanding mechanical, thermal and electrical properties of CNTs, a new generation of multifunctional high-performance composites suitable for a wide variety of applications can be developed.
Resumo:
The thermal degradation of flexible polyurethane foam has been studied under different conditions by thermogravimetric analysis (TG), thermogravimetric analysis-infrared spectrometry (TG-IR) and thermogravimetric analysis-mass spectrometry (TG-MS). For the kinetic study, dynamic and dynamic+isothermal runs were performed at different heating rates (5, 10 and 20 °C min−1) in three different atmospheres (N2, N2:O2 4:1 and N2:O2 9:1). Two reaction models were obtained, one for the pyrolysis and another for the combustion degradation (N2:O2 4:1 and N2:O2 9:1), simultaneously correlating the experimental data from the dynamic and dynamic+isothermal runs at different heating rates. The pyrolytic model considered consisted of two consecutive reactions with activation energies of 142 and 217.5 kJ mol−1 and reaction orders of 0.805 and 1.246. Nevertheless, to simulate the experimental data from the combustion runs, three consecutive reactions were employed with activation energies of 237.9, 103.5 and 120.1 kJ mol−1, and reaction orders of 2.003, 0.778 and 1.025. From the characterization of the sample employing TG-IR and TG-MS, the results obtained showed that the FPUF, under an inert atmosphere, started the decomposition breaking the urethane bond to produce long chains of ethers which were degraded immediately in the next step. However, under an oxidative atmosphere, at the first step not only the urethane bonds were broken but also some ether polyols started their degradation which finished at the second step producing a char that was degraded at the last stage.
Resumo:
Resumen del póster presentado en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.
Resumo:
Thermal decomposition of flexible polyurethane foam (FPUF) was studied under nitrogen and air atmospheres at 550 °C and 850 °C using a laboratory scale reactor to analyse the evolved products. Ammonia, hydrogen cyanide and nitrile compounds were obtained in high yields in pyrolysis at the lower temperature, whereas at 850 °C polycyclic aromatic hydrocarbons (PAHs) and other semivolatile compounds, especially compounds containing nitrogen (benzonitrile, aniline, quinolone and indene) were the most abundant products. Different behaviour was observed in the evolution of polychlorodibenzo-p-dioxins and furans (PCDD/Fs) at 550 °C and 850 °C. At 550 °C, the less chlorinated congeners, mainly PCDF, were more abundant. Contrarily, at 850 °C the most chlorinated PCDD were dominant. In addition, the total yields of PCDD/Fs in the pyrolysis and combustion runs at 850 °C were low and quite similar.
Resumo:
"Interagency agreement no. 78-D-XO449."
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"Sponsored by Office of Policy Development and Research, Department of Housing and Urban Development."
Resumo:
Mode of access: Internet.