937 resultados para TETRARUTHENATED NICKEL PORPHYRIN
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid Ni(C(5)H(10)NO(3)S)(2) . 2H(2)O complex was prepared and characterized. Electronic absorption spectrum shows an octahedral geometry for the complex. Infrared spectroscopy analysis shows that the metal atom is coordinated to the ligand through (COO(-)) and (S = O) groups. Thermal analysis confirmed the composition of the complex and suggests that the water molecules are not coordinated to the metal ion. The complex shows extremely high solubility in water. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
Aim the aim of this study was to evaluate the efficacy of ultrasound in cleaning the surface of stainless steel and Ni-Ti endodontic instruments.Methodology Twenty nickel-titanium instruments (10 Quantec files and 10 Nitiflex) and 20 stainless steel K-files (10 Maillefer-Dentsply and 10 Moyco Union Broach) were removed from their original packages and evaluated using a scanning electron microscope. Scores were given for the presence of residues on the surface or the instruments. The instruments were then cleaned in an ultrasonic bath containing only distilled water or detergent solution for 15 min, and re-evaluated, using scanning electron microscopy.Results Before cleaning, a greater amount of metallic debris was observed on the nickel-titanium Quantec instruments (P < 0.05), when compared to those made of stainless steel. Statistical analysis showed that the use of ultrasound was effective for cleaning the instruments, regardless of the irrigating solution or the instruments type (P < 0.05).Conclusions the use of ultrasound proved to be an efficient method for the removal of metallic particles from the surface of stainless steel and Ni-Ti endodontic instruments.
Resumo:
C28H28N2NiO4, triclinic, P (1) over bar (no. 2), a = 7.9202(6) angstrom, b = 8.0496(6) angstrom, c = 10.246(1) angstrom, alpha = 97.15(1)degrees, beta = 106.68(1)degrees, gamma = 94.686(9)degrees, V = 616.1 angstrom(3), Z = 1, R-gt(F) = 0.028, wR(ref)(F-2) = 0.078, T = 293 K.
Resumo:
In this study we describe the electrochemical behavior of 5,10,15,20-tetrakis(2'-aminophenylporphyrin)manganese(III) chloride supported on a glassy carbon electrode, as well as the electrochemical preparation and characterization of thin films based on pyrrole-3-carboxylic acid. The electrocatalytic action of the electrode modified with the Mn(III) porphyrin toward an azo dye was tested, and the characteristic strong interaction between the incorporated metalloporphyrin and RR120 dye was verified. Copyright (c) 2006 Society of Porphyrins & Phthalocyanines.
Resumo:
This work describes the synthesis of a first-generation iron porphyrin catalyst entrapped in a silica matrix by the sol-gel route, leading to spherical particles. The catalyst was synthesized by the method of Stober, through hydrolysis and condensation of the alkoxysilane TEOS in a mixture of alcohol, water and ammonia, in the presence of the iron porphyrin Fe(TPP)Cl. The relation between particle morphology and catalytic activity of the different Fe(TPP)-SiO2, obtained using different H2O/silane molar ratios and ammonia concentrations in the xerogel syntheses, was studied.The obtained catalysts were characterized by UV-vis spectroscopy, NMR Si-29. thermogravimetric analysis and transmission electron microscopy. Their ability to catalyze (Z)-cyclooctene epoxidation and cyclohexane oxidation was tested using iodosylbenzene as oxygen donor; the oxidation products were analyzed by gas chromatography and the catalysts obtained in a form of particles spherical and monodispersed showed to be a promising catalytic system for selective oxidation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (> 50 wt.%). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications.
Resumo:
C22H32N2NiO6, triclinic, P (1) over bar (no. 2), a = 8.335(1) angstrom, b = 9.314(1) angstrom, c = 17.045(2) angstrom, alpha = 88.45(1)degrees, beta = 82.12(1)degrees, gamma = 70.296(9)degrees, V = 1233.7 angstrom(3), Z = 2, R-gt(F) = 0.050, wR(ref)(F-2) = 0.177, T = 293 K.
Resumo:
Despite the fact that chromium electrodeposition results in protection against wear and corrosion, combined with chemical resistance and good lubricity, the reduction in fatigue strength of base metal and environmental requirements causes one to search for possible alternatives. To improve the fatigue and corrosion resistance of AISI 4340 steel, an experimental study has been made for an intermediate electroless nickel layer deposited on base metal. The objective of this study was to analyze the effect of nickel underplate on the fatigue and corrosion strength of hard-chromium-plated AISI 4340 steel. Deposition of the conventional wear-resistant hard chromium plating leads to a decrease in mechanical properties of the base metal, especially the fatigue strength. Rotating bending fatigue tests results indicate better performance for conventional hard chromium plating. Good corrosion resistance in salt fog exposure was obtained for the accelerated hard chromium plating. Experimental data showed higher fatigue and corrosion resistance for samples prepared with accelerated hard chromium plate over electroless nickel plate, when compared with samples without electroless nickel underplate.