951 resultados para TESTOSTERONE BIOSYNTHESIS
Resumo:
Extraction of the leaves of Chimarrhis turbinata has led to the isolation of turbinatine (1), a new corynanthean-type indole alkaloid, besides four known indole alkaloids, strictosidine, 5alpha-carboxystrictosidine, vallesiachotamine, and isovallesiachotamine. The structural determination of 1 was based on 1D and 2D spectroscopic data. An evaluation of the DNA-damaging activities of the isolates was performed by means of a bioassay using mutant strains of Saccharomyces cerevisiae, which indicated these compounds were weakly active.
Resumo:
The prostate of the female gerbil (Meriones unguiculatus) is similar to the human female prostate (Skene gland) and, despite its reduced size, it is functional and shows secretory activity. However, virtually nothing is known about its physiological regulation. This study was thus undertaken to evaluate the behavior of the gerbil female prostate in a hyperandrogenic condition. Adult females received subcutaneous injections of testosterone cypionate (1 mg/kg body weight every 48 h) up to 21 days. Circulating levels of testosterone and estradiol were monitored, and the prostate and ovaries subjected to structural and immunocytochemical analyses. The treatment resulted in sustained high levels of circulating testosterone, and caused a transient increase in estradiol. There was an increase in epithelial cell proliferation accompanied by significant reorganization of the epithelium and an apparent reduction in secretory activity, followed by a progressive increase in luminal volume density and accumulation of secretory products. Immunocytochemistry identified the expression of androgen receptor and a prostate-specific antigen (PSA)-related antigen in prostatic epithelial cells. A circulating PSA-related antigen was also found, and its concentration showed strong negative correlation with circulating estrogen. Epithelial dysplasia was detected in the prostate of treated females. Analysis of the ovaries showed the occurrence of a polycystic condition and stromal cell hyperplasia. The results indicate that testosterone has a stimulatory effect on the female prostate, inducing epithelial cell proliferation, differentiation, secretory activity, and dysplasia. The results also suggest that prostatic growth and activity, polycystic ovaries, and ovarian stromal cell hyperplasia are related to a hyperandrogenic condition in females.
Resumo:
The influence of testosterone on the development of the pressor response to common carotid occlusion was investigated in control and median eminence-lesioned male rats. In control rats (N = 9), gonadectomy performed 21 days before the experiments reduced by 22% (from 51 +/- 2 to 40 +/- 2 mmHg) and treatment with testosterone (300-mu-g for 4 days before the measurements) increased the initial peak pressor response (from 51 +/- 2 to 57 +/- 2 mmHg) which depends on carotid innervation. The maintained response which is of central origin (probably ischemic) was less affected. In nongonadectomized rats (N = 6), lesions of the median eminence (6 days) decreased the initial peak by 19% (from 52 +/- 2 to 42 +/- 3 mmHg) and the maintained response by 56% (from 32 +/- 2 to 14 +/- 1 mmHg). Sham-operated rats served as controls. In gonadectomized animals (N = 6) the lesion reduced only the maintained response (from 23 +/- 2 to 11 +/- 1 mmHg). Testosterone supplementation restored the maintained response but did not alter the initial peak. These results indicate that the pressor response to common carotid occlusion in male rats is modulated by testosterone and that the depression in the maintained response caused by median eminence lesion can be reversed by steroid supplementation.
Resumo:
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31 kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Maytenus aquifolium (Celastraceae) and Salacia campestris (Hippocrateaceae) species accumulate friedelane and quinonemethide triterpenoids in their leaves and root bark, respectively. Enzymatic extracts obtained from leaves displayed cyclase activity with conversion of the substrate oxidosqualene to the triterpenes, 3 beta -friedelanol and friedelin. In addition, administration of (+/-)5-H-3 mevalonolactone in leaves of M. aquifolium seedlings produced radio labelled friedelin in the leaves, twigs and stems, while the root bark accumulated labelled maytenin and pristimerin. These experiments indicated that the triterpenes once biosynthesized in the leaves are translocated to the root bark and further transformed to the antitumoral quinonemethide triterpenoids. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Basic aspects of the hormonal profile of five hormones were studied in neonate male buffaloes. The level of testosterone (T), androstenedione (A), cortisol (C), triiodothyronine (T3) and thyroxine (T4) were determined during the period of 1-6, 7-8, - 9-12, 24, 48, 72 and 96 hours after parturition, using RIA solid phase technique. All hormones studied presented high levels in the neonate animals. The T and A levels were high in the first 1-6 hours post-partum, being 99.6+/-66.6 and 1,301.4+/-887.7 pg/ml, respectively. The T decreased sharply to basal levels (below the analysis limit of detection) within 24 hours while the A reached the basal level within 48 hours with 348.0+/-279.4pg/ml. The C and T4 levels were also high in the first 24-48 hours, which levels were 5.0+/-3.2 and 11.1+/-2.6 mu g/ml, respectively, decreasing gradually and significantly (P<0.01) until 96 hours post-partum, when they approached the basal levels (1.2+/-1.5 and 7.2+/-2.7 mu g/ml, respectively). The concentration of T3 remained elevated during the entire period of sample collection with little variation (P>0.05), with levels of 328.6+/-130.8 and 294.5+/-134.9ng/dl, respectively during 1-6 hours and 96 hours after parturition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The biosynthesis of chondroitinase and hyaluronidase by different isolates of Paracoccidioides brasiliensis was investigated in 20 strains isolated from patients (17 strains), a penguin (Pygocelis adeliae, one strain), an armadillo (Dasypus novemcinctus, one strain) and the environment (dog food, one strain). All the P. brasiliensis isolates studied had the ability to produce chondroitinase and hyaluronidase, although differences in colony morphology and enzyme production were detected among them. These results suggest that further investigations should be carried out in the clinical field in order to clarify the potential role of P. brasiliensis enzyme production in the pathogenesis of paracoccidioidomycosis.
Resumo:
The objective of this research was to investigate the potential of xylanase production by Aspergillus japonicus and to determine the effects of cultivation conditions in the process, aiming toward optimization of enzyme production. The best temperature, as well as the best carbon source, for biomass production was determined through an automated turbidimetric method (Bioscreen-C). The enzyme activity of this fungus was separately evaluated in two solid substrates (wheat and soybean bran) and in Vogel medium, adding other carbon sources. Temperature effects, cultivation time, and spore concentrations were also tested. The best temperature for enzyme and biomass production was 25°C; however, the best carbon source for growth (determined by the Bioscreen C) did not turn out to be a good inducer of xylanase production. Maximum xylanase activity was achieved when the fungus was cultivated in wheat bran (without the addition of any other carbon source) using a spore concentration of 1 × 107 spores/mL (25°C, pH 5.0, 120 h). A. japonicus is a good xylanase producer under the conditions presented in these assays. © 2006 Academic Journals.
Resumo:
Elevated blood testosterone concentrations, often accompanied by male-typical behaviors, is a common signalment of mares with granulosa-theca cell tumors (GCTCs), but no definitive information exists regarding the cellular differentiation of tumors associated with androgen secretion. This study was conducted to localize and thereby define the cellular expression of 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17), the enzyme most directly responsible for androgen synthesis, in 30 GTCTs and control tissues (gonads and adrenal glands) using immuno-histochemistry (IHC). Immuno-reactivity for P450c17 was evident in approximately half of 30 specimens examined, was most consistent in the interstitial cells surrounding existing or developing cysts, and was less intense in cells within cysts in the smaller proportion of specimens where this was observed. In control tissues, the expression of P450c17 was localized primarily in theca interna of normal ovarian follicles, in theca-lutein cells of some corpora lutea, but not in granulosa-lutein cells. Testicular interstitial cells and islands of adreno-cortical cells located in the adrenal medulla of the adrenal cortex further established the specificity of the antisera used. These data provided the first substantive evidence that polyhedral cells identified previously in GTCTs by histopathology have the potential to synthesize and secrete androgens, similar to theca interna and theca lutein cells in normal equine ovaries. © 2010 Elsevier Inc.
Resumo:
The female prostate is a differentiated organ found in several mammal species, including humans and rodents. This gland has been related to important functions on female reproductive biology. Although the factors, which regulate prostate's development and activity are not well known, its functionality has been related to steroid hormones. It is well established that cyclic changes of estradiol and progesterone levels promote histophysiological adaptations of the whole female body. In contrast, only a few is found about those adaptations in female prostate. Thus, this study aimed to evaluate the effect of estradiol and estradiol+testosterone association on gerbil female prostate in order to verify, which hormonal associations are necessary to its homeostasis. For this, adult females had the ovaries surgically removed. After recovering, they received estradiol and estradiol+testosterone doses through 30 days, each 48 h. The prostatic tissue underwent morphological and morphometric-estereological analysis. Hormonal restriction caused great gland involution and decreased secretory activity, aspects that were reverted by exposure to estradiol and estradiol+testosterone. However, these hormones were not able to re-establish the normal prostate histoarchitecture. The immunoreaction of steroid receptors (ER-α, ER-β, and AR) responded differently among the experimental and control groups, and PCNA assay showed a decrease in epithelial cell proliferation within groups that had hormone privation. Therefore, we conclude that estradiol and testosterone are able to influence prostate morphophysiology and the maintenance of gland homeostasis depends on a balance among these and other hormones. © 2013 Wiley Periodicals, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)