961 resultados para Synchronized swimming
Potentially human pathogenic Acanthamoeba isolated from a heated indoor swimming pool in Switzerland
Resumo:
Some free-living amoebae, including some species of the genus Acanthamoeba, can cause infections in humans and animals. These organisms are known to cause granulomatous amebic encephalitis (GAE) in predominantly immune-deficient persons. In the present study, we isolated a potentially human pathogenic Acanthamoeba isolate originating from a public heated indoor swimming pool in Switzerland. The amoebae, thermophilically preselected by culture at 37 degrees C, subsequently displayed a high thermotolerance, being able to grow at 42 degrees C, and a marked cytotoxicity, based on a co-culture system using the murine cell line L929. Intranasal infection of Rag2-immunodeficient mice resulted in the death of all animals within 24 days. Histopathology of brains and lungs revealed marked tissue necrosis and hemorrhagic lesions going along with massive proliferation of amoebae. PCR and sequence analysis, based on 18S rDNA, identified the agent as Acanthamoeba lenticulata. In summary, the present study reports on an Acanthamoeba isolate from a heated swimming pool suggestive of being potentially pathogenic to immunocompromised persons.
Resumo:
Two synchronization protocols in lactating dairy and beef cows and in dairy heifers were tested for efficacy of breeding by artificial insemination (AI) with or without estrus detection. Controls received three prostaglandin F2a (PGF2a) injections 14 days apart before AI at observed estrus. Pregnancy rates were compared with animals on the Ovsynch protocol that combined gonadotropin releasing hormone (GnRH) and PGF2a treatments with a timed AI 16 to 20 hours after the second GnRH injection. The pregnancy rates were similar at synchronized ovulation to fixed-time AI in lactating cows, but not effective in heifers because of the lack of synchronization.
Resumo:
Methods of heat detection were compared in the Mid- Crest Area Cattle Evaluation Program (MACEP) heifer development program in the 1998-breeding season. A total of 189 heifers from thirteen consignors entered the program on November 10, 1997. These heifers were condition scored, hip height measured, weighed, disposition scored, booster vaccinated, and treated for parasites at the time of arrival. Determination of the heifer’s mature weight was made and a target of 65% of their mature weight at breeding was established. The ration was designed to meet this goal. The heifers were kept in a dry lot until all heifers were AI bred once. The heifers were periodically weighed and condition scored to monitor their gains and the ration was adjusted as needed. The estrus synchronization program consisted of an oral progesterone analog for 14 days; 17 days after completion of the progesterone analog treatment a single injection of prostaglandin was given and the heifers were then estrus detected. Two concurrent methods of estrus detection were utilized: 1) Ovatec â electronic breeding probe (probe), 2) HeatWatchâ estrus detection system (HW), and 3) a combination of probe and HW. Probe readings were obtained each 12 hours and the heifers were continuously monitored for estrus activity using the HW system. The probe was used as the primary estrus detection method and the HW system was used as a back-up system. Those heifers that did not demonstrate any estrus signs prior to 96 hours post prostaglandin treatment were mass inseminated at 96 hours. Post AI breeding, 151 of the heifers were placed on pasture and ran with clean-up bulls for 60 days. The remaining heifers left the program after the AI breeding was completed. Pregnancy to the AI breeding was determined by ultrasound on June 29, 1998. Results from using both probe and HW were 60% pregnant by AI, probe alone was 32% pregnant by AI, and HW alone was 27% pregnant by AI. The result of mass insemination was 20% pregnant by AI.
Resumo:
Extant hominoids, including humans, are well known for their inability to swim instinctively. We report swimming and diving in two captive apes using visual observation and video recording. One common chimpanzee and one orangutan swam repeatedly at the water surface over a distance of 2-6 m; both individuals submerged repeatedly. We show that apes are able to overcome their negative buoyancy by deliberate swimming, using movements which deviate from the doggy-paddle pattern observed in other primates. We suggest that apes' poor swimming ability is due to behavioral, anatomical, and neuromotor changes related to an adaptation to arboreal life in their early phylogeny. This strong adaptive focus on arboreal life led to decreased opportunities to interact with water bodies and consequently to a reduction of selective pressure to maintain innate swimming behavior. As the doggy paddle is associated with quadrupedal walking, a deviation from terrestrial locomotion might have interfered with the fixed rhythmic action patterns responsible for innate swimming.
Resumo:
Thermal acclimation is frequently cited as a means by which ectothermic animals improve their Darwinian fitness, i.e. the beneficial acclimation hypothesis. As the critical swimming speed (U (crit)) test is often used as a proxy measure of fitness, we acclimated Atlantic cod (Gadus morhua) to 4 and 10 degrees C and then assessed their U (crit) swimming performance at their respective acclimation temperatures and during acute temperature reversal. Because phenotypic differences exist between different populations of cod, we undertook these experiments in two different populations, North Sea cod and North East Arctic cod. Acclimation to 4 or 10 degrees C had a minimal effect on swimming performance or U (crit), however test temperature did, with all groups having a 10-17% higher U (crit) at 10 degrees C. The swimming efficiency was significantly lower in all groups at 4 degrees C arguably due to the compression of the muscle fibre recruitment order. This also led to a reduction in the duration of "kick and glide" swimming at 4 degrees C. No significant differences were seen between the two populations in any of the measured parameters, due possibly to the extended acclimation period. Our data indicate that acclimation imparts little benefit on U (crit) swimming test in Atlantic cod. Further efforts need to identify the functional consequences of the long-term thermal acclimation process.
Resumo:
Traditionally, critical swimming speed has been defined as the speed when a fish can no longer propel itself forward, and is exhausted. To gain a better understanding of the metabolic processes at work during a U(crit) swim test, and that lead to fatigue, we developed a method using in vivo (31)P-NMR spectroscopy in combination with a Brett-type swim tunnel. Our data showed that a metabolic transition point is reached when the fish change from using steady state aerobic metabolism to non-steady state anaerobic metabolism, as indicated by a significant increase in inorganic phosphate levels from 0.3+/-0.3 to 9.5+/-3.4 mol g(-1), and a drop in intracellular pH from 7.48+/-0.03 to 6.81+/-0.05 in muscle. This coincides with the point when the fish change gait from subcarangiform swimming to kick-and-glide bursts. As the number of kicks increased, so too did the Pi concentration, and the pH(i) dropped. Both changes were maximal at U(crit). A significant drop in Gibbs free energy change of ATP hydrolysis from -55.6+/-1.4 to -49.8+/-0.7 kJ mol(-1) is argued to have been involved in fatigue. This confirms earlier findings that the traditional definition of U(crit), unlike other critical points that are typically marked by a transition from aerobic to anaerobic metabolism, is the point of complete exhaustion of both aerobic and anaerobic resources.
Resumo:
Ventricular assist devices (VADs) are blood pumps that offer an option to support the circulation of patients with severe heart failure. Since a failing heart has a remaining pump function, its interaction with the VAD influences the hemodynamics. Ideally, the heart's action is taken into account for actuating the device such that the device is synchronized to the natural cardiac cycle. To realize this in practice, a reliable real-time algorithm for the automatic synchronization of the VAD to the heart rate is required. This paper defines the tasks such an algorithm needs to fulfill: the automatic detection of irregular heart beats and the feedback control of the phase shift between the systolic phases of the heart and the assist device. We demonstrate a possible solution to these problems and analyze its performance in two steps. First, the algorithm is tested using the MIT-BIH arrhythmia database. Second, the algorithm is implemented in a controller for a pulsatile and a continuous-flow VAD. These devices are connected to a hybrid mock circulation where three test scenarios are evaluated. The proposed algorithm ensures a reliable synchronization of the VAD to the heart cycle, while being insensitive to irregularities in the heart rate.