903 resultados para Surface Enhanced Raman Spectroscopy
Resumo:
Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N-(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-H) and N,N-bis(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-SH), immobilized on Au(111)-(1x1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered striped phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA–current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)|HS-6V6-SH(HS-6V6-H)|Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential ES and at constant bias voltage (ET–ES), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ V+. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H|Au(S) revealed current (iT)–voltage (ET) curves with a maximum located at the equilibrium potential of the redox-process V2+ V+. The experimental iT–ET characteristics of the HS-6V6-H–modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.
Resumo:
We present an experimental study of the CO electro-oxidation on Pt(100)-(1 × 1) electrodes employing electrochemical methods in combination with in situ scanning tunneling microscopy (STM) and shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We discussed the nature and stability of the active sites in the preignition region in the presence of dissolved CO (COb) and monitored substrate structure changes during the COb electro-oxidation process. We corroborated that the electro-oxidation kinetics is determined decisively by the history of CO adlayer formation. A new mechanism was proposed for Pt(100) electrode deactivation in the preignition region after excursion of electrode potential to COb ignition region. We believe that this mechanism takes place on Pt surfaces independently on their crystallographic orientation.
Resumo:
Surface-enhanced raman scattering (SERS) spectra of self-assembled monolayers of 4-aminobenzenethiol (4-ABT) on copper (Cu) and silver (Ag) surfaces decorated with Cu and Ag nanostructures, respectively, have been obtained with lasers at 532, 632.8, 785, and 1064 nm. Density functional theory (DFT) has been used to obtain calculated vibrational frequencies of the 4-ABT and 4,4′-dimercaptoazobenzene (4,4′-DMAB) molecules adsorbed on model Cu surfaces. The features of the SERS spectra depend on the electrode potential and the type and power density of the laser. SERS spectra showed the formation of the 4,4′-DMAB on the nanostructured Cu surface independently of the laser employed. For the sake of comparison SERS spectra of a self-assembled monolayer of the 4-ABT on Ag surfaces decorated with Ag nanostructures have been also obtained with the same four lasers. When using the 532 and 632.8 nm lasers, the 4,4′-DMAB is formed on Cu surface at electrode potentials as low as −1.0 V (AgCl/Ag) showing a different behavior with respect to Ag (and others metals such as Au and Pt). On the other hand, the surface-enhanced infrared reflection absorption (SEIRA) spectra showed that in the absence of the laser excitation the 4,4′-DMAB is not produced from the adsorbed 4-ABT on nanostructured Cu in the whole range of potentials studied. These results point out the prevalence of the role of electron–hole pairs through surface plasmon activity to explain the obtained SERS spectra.
Resumo:
Recent advances in nanotechnology have led to the application of nanoparticles in a wide variety of fields. In the field of nanomedicine, there is great emphasis on combining diagnostic and therapeutic modalities into a single nanoparticle construct (theranostics). In particular, anisotropic nanoparticles have shown great potential for surface-enhanced Raman scattering (SERS) detection due to their unique optical properties. Gold nanostars are a type of anisotropic nanoparticle with one of the highest SERS enhancement factors in a non-aggregated state. By utilizing the distinct characteristics of gold nanostars, new plasmonic materials for diagnostics, therapy, and sensing can be synthesized. The work described herein is divided into two main themes. The first half presents a novel, theranostic nanoplatform that can be used for both SERS detection and photodynamic therapy (PDT). The second half involves the rational design of silver-coated gold nanostars for increasing SERS signal intensity and improving reproducibility and quantification in SERS measurements.
The theranostic nanoplatforms consist of Raman-labeled gold nanostars coated with a silica shell. Photosensitizer molecules for PDT can be loaded into the silica matrix, while retaining the SERS signal of the gold nanostar core. SERS detection and PDT are performed at different wavelengths, so there is no interference between the diagnostic and therapeutic modalities. Singlet oxygen generation (a measure of PDT effectiveness) was demonstrated from the drug-loaded nanocomposites. In vitro testing with breast cancer cells showed that the nanoplatform could be successfully used for PDT. When further conjugating the nanoplatform with a cell-penetrating peptide (CPP), efficacy of both SERS detection and PDT is enhanced.
The rational design of plasmonic nanoparticles for SERS sensing involved the synthesis of silver-coated gold nanostars. Investigation of the silver coating process revealed that preservation of the gold nanostar tips was necessary to achieve the increased SERS intensity. At the optimal amount of silver coating, the SERS intensity is increased by over an order of magnitude. It was determined that a majority of the increased SERS signal can be attributed to reducing the inner filter effect, as the silver coating process moves the extinction of the particles far away from the laser excitation line. To improve reproducibility and quantitative SERS detection, an internal standard was incorporated into the particles. By embedding a small-molecule dye between the gold and silver surfaces, SERS signal was obtained both from the internal dye and external analyte on the particle surface. By normalizing the external analyte signal to the internal reference signal, reproducibility and quantitative analysis are improved in a variety of experimental conditions.
Resumo:
Surface-enhanced Raman measurements of <1 μL analyte/colloid meso-droplets on superhydrophobic wires with hydrophilic tips allowed dipicolinic acid, a spore biomarker for Bacillus anthracis (anthrax), to be detected at 10(-6) mol dm(-3). This is equivalent to 18 spores, significantly below the infective dose of 10(4) spores and 2 orders of magnitude better than previous measurements.
Resumo:
The present invention relates to a logic gate, comprising a metamaterial surface enhanced Raman scattering (MetaSERS) sensor, comprising (a) alphabetical metamaterials in the form of split ring resonators operating in the wavelength range of from 560 to 2200 nm; and (b) a guanine (G) and thymine (T)-rich oligonucleotide that can, upon presence of potassium cations (K+), fold into a G-quadruplex structure, and in presence of Hg2+, form a T-Hg2+-T hairpin complex that inhibits or disrupts the G-quadruplex structure formed in presence of K+, as well as methods of operating and using such a logic gate.
Resumo:
Gold is one of the most widely used metals for building up plasmonic devices. Although slightly less efficient than silver for producing sharp resonance, its chemical properties make it one of the best choices for designing sensors. Sticking gold on a silicate glass substrate requires an adhesion layer, whose effect has to be taken into account. Traditionally, metals (Cr or Ti) or dielectric materials (TiO2 or Cr2O3 ) are deposited between the glass and the nanoparticle. Recently, indium tin oxide and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as a new adhesion layer. The aim of this work is to compare these six adhesion layers for surface- enhanced Raman scattering sensors by numerical modeling. The near-field and the far-field optical responses of gold nanocylinders on the different adhesion layers are then calculated. It is shown that MPTMS leads to the highest field enhancement, slightly larger than other dielectric materials. We attributed this effect to the lower refractive index of MPTMS compared with the others.
Influência das espécies ativas na absorção de intersticiais durante a carbonitretação a plasma do TI
Resumo:
Physical-chemical properties of Ti are sensible to the presence of interstitial elements. In the case of thermochemical treatments plasma assisted, the influence of different active species is not still understood. In order to contribute for such knowledge, this work purposes a study of the role played by the active species atmosphere into the Ar N2 CH4 carbonitriding plasma. It was carried out a plasma diagnostic by OES (Optical Emission Spectroscopy) in the z Ar y N2 x CH4 plasma mixture, in which z, y and x indexes represent gas flow variable from 0 to 4 sccm (cm3/min). The diagnostic presents abrupt variations of emission intensities associated to the species in determined conditions. Therefore, they were selected in order to carry out the chemical treatment and then to investigate their influences. Commercial pure Ti disks were submitted to plasma carbonitriding process using pre-established conditions from the OES measurements while some parameters such as pressure and temperature were maintained constant. The concentration profiles of interstitial elements (C and N atoms) were determined by Resonant Nuclear Reaction Analysis (NRA) resulting in a depth profile plots. The reactions used were 15N(ρ,αγ)12C and 12C(α,α)12C. GIXRD (Grazing Incidence X-Ray Diffraction) analysis was used in order to identify the presence of phases on the surface. Micro-Raman spectroscopy was used in order to qualitatively study the carbon into the TiCxN1 structure. It has been verified which the density species effectively influences more the diffusion of particles into the Ti lattice and characteristics of the layer formed than the gas concentration. High intensity of N2 + (391,4 nm) and CH (387,1 nm) species promotes more diffusion of C and N. It was observed that Hα (656,3 nm) species acts like a catalyzer allowing a deeper diffusion of nitrogen and carbon into the titanium lattice.
Resumo:
A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anionic surface-initiated polymerization of ethylene oxide and styrene has been performed using multiwalled carbon nanotubes (MWNTs) functionalized with anionic initiators. The surface of MWNTs was modified via covalent attachment of precursor anions such as 4-hydroxyethyl benzocyclobutene (BCBEO) and 1-benzocyclobutene-1′-phenylethylene (BCB-PE) through Diels-Alder cycloaddition at 235 °C. Surface-functionalized MWNTs-g-(BCB-EO) n and MWNTs-g-(BCB-PE) n with 23 and 54 wt % precursor initiators, respectively, were used for the polymerizations. Alkoxide anion on the surface of MWNTs-g-(BCB-EO) n was generated through reaction with potassium triphenylmethane for the polymerization of ethylene oxide in tetrahydrofuran and phenyl substituted alkyllithium was generated from the surface of MWNTs-g-(BCB-PE) n using sec-butyllithium for the polymerization of styrene in benzene. In both cases, the initiation was found to be very slow because of the heterogeneous reaction medium. However, the MWNTs gradually dispersed in the reaction medium during the polymerization. A pale green color was noticed in the case of ethylene oxide polymerization and the color of initiator as well as the propagating anions was not discernible visually in styrene polymerization. Polymer grafted nanocomposites, MWNTs-g-(BCB-PEO) n and MWNTs-g-(BCB-PS) n containing a very high percentage of hairy polymer with a small fraction of MWNTs (<1 wt %) were obtained. The conversion of ethylene oxide and the weight percent of PEO on the surface of the MWNTs increased with increasing reaction time indicating a controlled polymerization. The polymer-grafted MWNTs were characterized using FTIR, 1H NMR, Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy (TEM). Size exclusion chromatography of the polymer grafted MWNTs revealed broad molecular weight distributions (1.3 < Mw/Mn < 1.8) indicating the presence of different sizes of polymer nanocomposites. The TEM images showed the presence of thick layers of polymer up to 30 nm around the MWNTs. The living nature of the growing polystyryllithium was used to produce diblock copolymer grafts using sequential polymerization of isoprene on the surface of MWNTs.
Resumo:
This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.
Resumo:
ZnO nanoflowers were synthesized by the hydrothermal process at an optimized growth temperature of 200 ◦C and a growth/reaction time of 3 h. As-prepared ZnO nanoflowers were characterized by x-ray diffraction, scanning electron microscopy, UV–visible and Raman spectroscopy. X-ray diffraction and Raman studies reveal that the as-synthesized flower-like ZnO nanostructures are highly crystalline with a hexagonal wurtzite phase preferentially oriented along the (1 0 1 1) plane. The average length (234–347 nm) and diameter (77–106 nm) of the nanorods constituting the flower-like structure are estimated using scanning electron microscopy studies. The band gap of ZnO nanoflowers is estimated as 3.23 eV, the lowering of band gap is attributed to the flower-like surface morphology and microstructure of ZnO. Room temperature photoluminescence spectrum shows a strong UV emission peak at 392 nm, with a suppressed visible emission related to the defect states, indicating the defect free formation of ZnO nanoflowers that can be potentially used for UV light-emitting devices. The suppressed Raman bands at 541 and 583 cm−1 related to defect states in ZnO confirms that the ZnO nanoflowers here obtained have a reduced presence of defects