725 resultados para Support for Learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measuring the quality of a b-learning environment is critical to determine the success of a b-learning course. Several initiatives have been recently conducted on benchmarking and quality in e-learning. Despite these efforts in defining and examining quality issues concerning online courses, a defining instrument to evaluate quality is one of the key challenges for blended learning, since it incorporates both traditional and online instruction methods. For this paper, six frameworks for quality assessment of technological enhanced learning were examined and compared regarding similarities and differences. These frameworks aim at the same global objective: the quality of e-learning environment/products. They present different perspectives but also many common issues. Some of them are more specific and related to the course and other are more global and related to institutional aspects. In this work we collected and arrange all the quality criteria identified in order to get a more complete framework and determine if it fits our b-learning environment. We also included elements related to our own b-learning research and experience, acquired during more than 10 years of experience. As a result we have create a new quality reference with a set of dimensions and criteria that should be taken into account when you are analyzing, designing, developing, implementing and evaluating a b-learning environment. Besides these perspectives on what to do when you are developing a b-learning environment we have also included pedagogical issues in order to give directions on how to do it to reach the success of the learning. The information, concepts and procedures here presented give support to teachers and instructors, which intend to validate the quality of their blended learning courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A evolução dos dispositivos móveis e a mudança de paradigma educacional, permitiu o surgimento de um novo conceito no processo de ensino e aprendizagem, o mobile learning. O mobile learning pode ser visto como um conceito multidisciplinar, dependendo da perspetiva de cada autor, pois ainda não existe um consenso em relação à definição do conceito. No entanto, todos os autores concordam que o mobile learning consiste na aquisição de conhecimento ou competência através do uso de tecnologias móveis, em qualquer lugar e momento. A presente investigação, de natureza exploratória, pretendeu estudar a receptividade e predisposição dos estudantes e docentes do ensino superior para com a utilização do mobile learning, uma vez que o ensino superior parece ser o ambiente ideal para a realização deste estudo. Por um lado, devido à democratização dos dispositivos móveis, por outro, porque o Instituto Politécnico do Porto pretende vir a implementar um projeto de mobile learning, enquadrado no e- IPP. Deste modo, para a concretização desta investigação, foi realizada uma revisão bibliográfica exaustiva que serviu de base de sustentação para todo o trabalho, complementada com um questionário, de forma a dar resposta às questões de investigação. Depois de recolhidos todos os resultados obtidos através do questionário, procedeu-se à análise e discussão mesmos, bem como às respectivas conclusões.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a wind speed forecasting model that contributes to the development and implementation of adequate methodologies for Energy Resource Man-agement in a distribution power network, with intensive use of wind based power generation. The proposed fore-casting methodology aims to support the operation in the scope of the intraday resources scheduling model, name-ly with a time horizon of 10 minutes. A case study using a real database from the meteoro-logical station installed in the GECAD renewable energy lab was used. A new wind speed forecasting model has been implemented and it estimated accuracy was evalu-ated and compared with a previous developed forecast-ing model. Using as input attributes the information of the wind speed concerning the previous 3 hours enables to obtain results with high accuracy for the wind short-term forecasting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of Competences Recognition, Validation and Certification , also known as Accreditation of Prior Learning (APL), is an innovative means of attaining school certificates for individuals without an academic background. The main objective of this process is to validate what people have learned in informal contexts, in order to attribute academic certificates. With the increasing interest of the qualification of workers and governmental support, more and more Portuguese organizations promote this process within their facilities and their work hours. This study explores the relationship between the promotion of this Human Resource Development Programme and employee’s attitudes (Job Satisfaction and Organizational Commitment) and behaviours (Extra-role Organizational Citizenship Behaviours) towards the organization they work for. Results of a cross-sectional survey of Portuguese Industrial Workers (N=135) showed that statistical significant results are in the higher levels of Voice Behaviours (a dimension of Extra-role Organizational Citizenship Behaviour in the groups of workers who were involved or had graduated from the firm promoted APL process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problematic situation faced by clients, associated to the processes of health and disease, is expressed through emotions that nursing students have to deal with in the course of care and their formative experiences in clinical teaching. Students have learning needs not only to manage emotions in the context of customer care, but also in terms of their own internal world, emotional conflicts, emotional stress and burn-out. With the present literature review, we intend to explore existing evidence regarding the ways in which the nurse supervisor's support towards nursing students potentiates the development of their competences for the performance of emotional labour. These skills prove to be the key in the ability to manage the emotionally intense situations of care practice and the support function of the nursing supervisor contributes to the development of such competences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of information and communication technologies (ICT) in diverse professional and personal contexts calls for new knowledge, and a set of abilities, competences and attitudes, for an active and participative citizenship. In this context it is acknowledged that universities have an important role innovating in the educational use of digital media to promote an inclusive digital literacy. The educational potential of digital technologies and resources has been recognized by both researchers and practitioners. Multiple pedagogical models and research approaches have already contributed to put in evidence the importance of adapting instructional and learning practices and processes to concrete contexts and educational goals. Still, academic and scientific communities believe further investments in ICT research is needed in higher education. This study focuses on educational models that may contribute to support digital technology uses, where these can have cognitive and educational relevance when compared to analogical technologies. A teaching and learning model, centered in the active role of the students in the exploration, production, presentation and discussion of interactive multimedia materials, was developed and applied using the internet and exploring emergent semantic hypermedia formats. The research approach focused on the definition of design principles for developing class activities that were applied in three different iterations in undergraduate courses from two institutions, namely the University of Texas at Austin, USA and the University of Lisbon, Portugal. The analysis of this study made possible to evaluate the potential and efficacy of the model proposed and the authoring tool chosen in the support of metacognitive skills and attitudes related to information structuring and management, storytelling and communication, using computers and the internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher education in Portugal, in the last forty years, has undergone profound changes with the enlargement of public higher education network, the appearance of new institutions, the quantity and the heterogeneity of students. The implementation of the Bologna Process in European community countries led to the redesign of higher education Portuguese courses as well as their corresponding curricula. In recent years, the use of Project-led education was one of the most significant changes in teaching and learning, particularly in engineering in higher education in Portugal. This teaching methodology encourages students and teachers to undertake new roles, new responsibilities and a new learning perspective. This study aims at understanding whether the role of the tutor is to be suitable to the needs and expectations of Project-led education students. These changes however are not only structural. At the University of Minho, new teaching and learning methodologies were adopted, which could guide the training of professionals on to the twenty-first century. The opportunity arising from the implementation of Project-led education in Engineering methodology was used in the University of Minho’s courses. This teaching method is intended to provide students with educational support programs that benefit the academic performance, allowing the opportunity to upgrade, train and develop the ability to study and learn more effectively. Through the Project-led education it is possible to provide students with techniques and procedures and develop the ability to communicate orally and in writing. Students and teachers have assumed new roles in the teaching-learning process allowing in one hand the students to explore, discover and question themselves about some knowledge and on the other hand the teachers to change to a tutor, a companion and to a student project guide. Therefore, surveys were analyzed, comprising questions about the most significant contribution of the tutor as well as if there are some initial expectations that have not been foreseen by the tutor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Tecnologias e Sistemas de Informação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.