917 resultados para Structural study
Resumo:
The research presented in this thesis investigates the nature of the relationship between the development of the Knowledge-Based Economy (KBE) and Structural Funds (SF) in European regions. A particular focus is placed on the West Midlands (UK) and Silesia (Poland). The time-frame taken into account in this research is the years 1999 to 2009. This is methodologically addressed by firstly establishing a new way of calculating the General Index of the KBE for all of the EU regions; secondly, applying a number of statistical methods to measure the influence of the Funds on the changes in the regional KBE over time; and finally, by conducting a series of semi-structured stakeholder interviews in the two key case study regions: the West Midlands and Silesia. The three main findings of the thesis are: first, over the examined time-frame, the values of the KBE General Index increased in over 66% of the EU regions; furthermore, the number of the “new” EU regions in which the KBE increased over time is far higher than in the “old” EU. Second, any impact of Structural Funds on the regional KBE occurs only in the minority of the European regions and any form of functional dependency between the two can be observed only in 30% of the regions. Third, although the pattern of development of the regional KBE and the correlation coefficients differ in the cases of Silesia and the West Midlands, the analysis of variance carried out yields identical results for both regions. Furthermore, the qualitative analysis’ results show similarities in the approach towards the Structural Funds in the two key case-study regions.
Resumo:
Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.
Resumo:
We present a comparative structural–vibrational study of nanostructured systems of V2O5: nano-urchin (VONURs) which are spherical structures composed of a radially oriented array of VOx nanotubes (VOx-NTs) with a volumetric density of ∼40 sr–1, and vanadium oxide nanorods (VOx-NRDs) with an average length of ∼100 nm. The Raman scattering spectrum of the nano-urchin exhibits a band at 1014 cm–1 related to the distorted gamma conformation of the vanadium pentoxide (γ-V5+). The infrared vibrational spectra of the nanorods sample also exhibit a distorted laminar V2O5 structure with evidence observed for quadravalent V4+ species at 921 cm–1.
Resumo:
BACKGROUND: Even though physician rating websites (PRWs) have been gaining in importance in both practice and research, little evidence is available on the association of patients' online ratings with the quality of care of physicians. It thus remains unclear whether patients should rely on these ratings when selecting a physician. The objective of this study was to measure the association between online ratings and structural and quality of care measures for 65 physician practices from the German Integrated Health Care Network "Quality and Efficiency" (QuE). METHODS: Online reviews from two German PRWs were included which covered a three-year period (2011 to 2013) and included 1179 and 991 ratings, respectively. Information for 65 QuE practices was obtained for the year 2012 and included 21 measures related to structural information (N = 6), process quality (N = 10), intermediate outcomes (N = 2), patient satisfaction (N = 1), and costs (N = 2). The Spearman rank coefficient of correlation was applied to measure the association between ratings and practice-related information. RESULTS: Patient satisfaction results from offline surveys and the patients per doctor ratio in a practice were shown to be significantly associated with online ratings on both PRWs. For one PRW, additional significant associations could be shown between online ratings and cost-related measures for medication, preventative examinations, and one diabetes type 2-related intermediate outcome measure. There again, results from the second PRW showed significant associations with the age of the physicians and the number of patients per practice, four process-related quality measures for diabetes type 2 and asthma, and one cost-related measure for medication. CONCLUSIONS: Several significant associations were found which varied between the PRWs. Patients interested in the satisfaction of other patients with a physician might select a physician on the basis of online ratings. Even though our results indicate associations with some diabetes and asthma measures, but not with coronary heart disease measures, there is still insufficient evidence to draw strong conclusions. The limited number of practices in our study may have weakened our findings.
Resumo:
TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6–3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (–200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1–8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2–8.2 nm, 26–30 GPa, 0.3–0.4 and 2.1–4.8 × 10−6 mm3 N−1 m−1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1–3.7 nm, 41–45 GPa, 0.1–0.2 and 1.4–3.0 × 10−6 mm3 N−1 m−1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10−6 mm3 N−1 m−1).
Resumo:
This thesis work has been developed in collaboration between the Department of Physics and Astronomy of the University of Bologna and the IRCCS Rizzoli Orthopedic Institute during an internship period. The study aims to investigate the sensitivity of single-sided NMR in detecting structural differences of the articular cartilage tissue and their correlation with mechanical behavior. Suitable cartilage indicators for osteoarthritis (OA) severity (e.g., water and proteoglycans content, collagen structure) were explored through four NMR parameters: T2, T1, D, and Slp. Structural variations of the cartilage among its three layers (i.e., superficial, middle, and deep) were investigated performing several NMR pulses sequences on bovine knee joint samples using the NMR-MOUSE device. Previously, cartilage degradation studies were carried out, performing tests in three different experimental setups. The monitoring of the parameters and the best experimental setup were determined. An NMR automatized procedure based on the acquisition of these quantitative parameters was implemented, tested, and used for the investigation of the layers of twenty bovine cartilage samples. Statistical and pattern recognition analyses on these parameters have been performed. The results obtained from the analyses are very promising: the discrimination of the three cartilage layers shows very good results in terms of significance, paving the way for extensive use of NMR single-sided devices for biomedical applications. These results will be also integrated with analyses of tissue mechanical properties for a complete evaluation of cartilage changes throughout OA disease. The use of low-priced and mobile devices towards clinical applications could concern the screening of diseases related to cartilage tissue. This could have a positive impact both economically (including for underdeveloped countries) and socially, providing screening possibilities to a large part of the population.
Resumo:
Quantum Materials are many body systems displaying emergent phenomena caused by quantum collective behaviour, such as superconductivity, charge density wave, fractional hall effect, and exotic magnetism. Among quantum materials, two families have recently attracted attention: kagome metals and Kitaev materials. Kagome metals have a unique crystal structure made up of triangular lattice layers that are used to form the kagome layer. Due to superconductivity, magnetism, and charge ordering states such as the Charge Density Wave (CDW), unexpected physical phenomena such as the massive Anomalous Hall Effect (AHE) and possible Majorana fermions develop in these materials. Kitaev materials are a type of quantum material with a unique spin model named after Alexei Kitaev. They include fractional fluctuations of Majorana fermions and non-topological abelian anyons, both of which might be used in quantum computing. Furthermore, they provide a realistic framework for the development of quantum spin liquid (QSL), in which quantum fluctuations produce long-range entanglements between electronic states despite the lack of classical magnetic ordering. In my research, I performed several nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and muon spin spectroscopy (µSR) experiments to explain and unravel novel phases of matter within these unusual families of materials. NMR has been found to be an excellent tool for studying these materials’ local electronic structures and magnetic properties. I could use NMR to determine, for the first time, the structure of a novel kagome superconductor, RbV3Sb5, below the CDW transition, and to highlight the role of chemical doping in the CDW phase of AV3Sb5 superconductors. µSR has been used to investigate the effect of doping on kagome material samples in order to study the presence and behaviour of an anomalous phase developing at low temperatures and possibly related to time-reversal symmetry breaking.
Resumo:
This thesis aims to understand the behavior of a low-rise unreinforced masonry building (URM), the typical residential house in the Netherlands, when subjected to low-intensity earthquakes. In fact, in the last decades, the Groningen region was hit by several shallow earthquakes caused by the extraction of natural gas. In particular, the focus is addressed to the internal non-structural walls and to their interaction with the structural parts of the building. A simple and cost-efficient 2D FEM model is developed, focused on the interfaces representing mortar layers that are present between the non-structural walls and the rest of the structure. As a reference for geometries and materials, it has been taken into consideration a prototype that was built in full-scale at the EUCENTRE laboratory of Pavia (Italy). Firstly, a quasi-static analysis is performed by gradually applying a prescribed displacement on the roof floor of the structure. Sensitivity analyses are conducted on some key parameters characterizing mortar. This analysis allows for the calibration of their values and the evaluation of the reliability of the model. Successively, a transient analysis is performed to effectively subject the model to a seismic action and hence also evaluate the mechanical response of the building over time. Moreover, it was possible to compare the results of this analysis with the displacements recorded in the experimental tests by creating a model representing the entire considered structure. As a result, some conditions for the model calibration are defined. The reliability of the model is then confirmed by both the reasonable results obtained from the sensitivity analysis and the compatibility of the values obtained for the top displacement of the roof floor of the experimental test, and the same value acquired from the structural model.
Resumo:
Hypertensive patients exhibit higher cardiovascular risk and reduced lung function compared with the general population. Whether this association stems from the coexistence of two highly prevalent diseases or from direct or indirect links of pathophysiological mechanisms is presently unclear. This study investigated the association between lung function and carotid features in non-smoking hypertensive subjects with supposed normal lung function. Hypertensive patients (n = 67) were cross-sectionally evaluated by clinical, hemodynamic, laboratory, and carotid ultrasound analysis. Forced vital capacity, forced expired volume in 1 second and in 6 seconds, and lung age were estimated by spirometry. Subjects with ventilatory abnormalities according to current guidelines were excluded. Regression analysis adjusted for age and prior smoking history showed that lung age and the percentage of predicted spirometric parameters associated with common carotid intima-media thickness, diameter, and stiffness. Further analyses, adjusted for additional potential confounders, revealed that lung age was the spirometric parameter exhibiting the most significant regression coefficients with carotid features. Conversely, plasma C-reactive protein and matrix-metalloproteinases-2/9 levels did not influence this relationship. The present findings point toward lung age as a potential marker of vascular remodeling and indicate that lung and vascular remodeling might share common pathophysiological mechanisms in hypertensive subjects.
Resumo:
Minor structural alterations of the vocal fold cover are frequent causes of voice abnormalities. They may be difficult to diagnose, and are expressed in different manners. Cases of intracordal cysts, sulcus vocalis, mucosal bridge, and laryngeal micro-diaphragm form the group of minor structural alterations of the vocal fold cover investigated in the present study. The etiopathogenesis and epidemiology of these alterations are poorly known. To evaluate the existence and anatomical characterization of minor structural alterations in the vocal folds of newborns. 56 larynxes excised from neonates of both genders were studied. They were examined fresh, or defrosted after conservation via freezing, under a microscope at magnifications of 25× and 40×. The vocal folds were inspected and palpated by two examiners, with the aim of finding minor structural alterations similar to those described classically, and other undetermined minor structural alterations. Larynges presenting abnormalities were submitted to histological examination. Six cases of abnormalities were found in different larynges: one (1.79%) compatible with a sulcus vocalis and five (8.93%) compatible with a laryngeal micro-diaphragm. No cases of cysts or mucosal bridges were found. The observed abnormalities had characteristics similar to those described in other age groups. Abnormalities similar to sulcus vocalis or micro-diaphragm may be present at birth.
Resumo:
The aim of this study was to evaluate the microscopic structure and chemical composition of titanium bone plates and screws retrieved from patients with a clinical indication and to relate the results to the clinical conditions associated with the removal of these devices. Osteosynthesis plates and screws retrieved from 30 patients between January 2010 and September 2013 were studied by metallographic, gas, and energy dispersive X-ray (EDX) analyses and the medical records of these patients were reviewed. Forty-eight plates and 238 screws were retrieved. The time elapsed between plate and screw insertion and removal ranged between 11 days and 10 years. Metallographic analysis revealed that all the plates were manufactured from commercially pure titanium (CP-Ti). The screw samples analyzed consisted of Ti-6Al-4V alloy, except four samples, which consisted of CP-Ti. Titanium plates studied by EDX analysis presented greater than 99.7% titanium by mass. On gas analysis of Ti-6Al-4V screws, three samples were outside the standard values. One CP-Ti screw sample and one plate sample also presented an oxygen analysis value above the standard. The results indicated that the physical properties and chemical compositions of the plates and screws did not correspond with the need to remove these devices or the time of retention.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.