940 resultados para Stocks Repurchase
Resumo:
The ongoing decline in abundance and diversity of shark stocks, primarily due to uncontrolled fishery exploitation, is a worldwide problem. An additional problem for the development of conservation and management programmes is the identification of species diversity within a given area, given the morphological similarities among shark species, and the typical disembarkation of processed carcasses which are almost impossible to differentiate. The main aim of the present study was to identify those shark species being exploited off northern Brazil, by using the 12S-16S molecular marker. For this, DNA sequences were obtained from 122 specimens collected on the docks and the fish market in Bragança, in the Brazilian state of Pará. We identified at least 11 species. Three-quarters of the specimens collected were either Carcharhinus porosus or Rhizoprionodon sp, while a notable absence was the daggernose shark, Isogomphodon oxyrhyncus, previously one of the most common species in local catches. The study emphasises the value of molecular techniques for the identification of cryptic shark species, and the potential of the 12S-16S marker as a tool for phylogenetic inferences in a study of elasmobranchs.
Resumo:
High-diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well-established tree nursery in southeastern Brazil, namely (1) in-house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high-diversity reforestation as part of tropical forest restoration. In addition, community-based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.
Resumo:
Background and aims Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability. Methods A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E)on soil organic matter stocks and net N mineralization. Results A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0-15 cm soil layer. Field incubations conducted every 4 weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64 kg ha(-1) yr(-1), respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization. Conclusions Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.
Resumo:
The international mechanism for Reducing Greenhouse Gas Emissions from Deforestation and Forest Degradation (REDD) supposedly offers new opportunities for combining climate mitigation, conservation of the environment, and socio-economic development for development countries. In Laos REDD is abundantly promoted by the government and development agencies as a potential option for rural development. Yet, basic information for carbon management is missing: to date no knowledge is available at the national level on the quantities of carbon stored in the Lao landscapes. In this study we present an approach for spatial assessment of vegetation-based carbon stocks. We used Google Earth, Landsat and MODIS satellite imagery and refined the official national land cover data to assess carbon stocks. Our study showed that more than half (52%) of carbon stock of Laos is stored in natural forests, but that 70% of this stock is located outside of national protected areas. On the basis of two carbon-centered land use scenarios we calculated that between 30 and 40 million tons of carbon could be accumulated in shifting cultivation areas; this is less than 3% of the existing total stock. Our study suggests that the main focus of REDD in Laos should be on the conservation of existing carbon stocks, giving highest priority to the prevention of deforestation outside of national protected areas.
Resumo:
This event study investigates the impact of the Japanese nuclear disaster in Fukushima-Daiichi on the daily stock prices of French, German, Japanese, and U.S. nuclear utility and alternative energy firms. Hypotheses regarding the (cumulative) abnormal returns based on a three-factor model are analyzed through joint tests by multivariate regression models and bootstrapping. Our results show significant abnormal returns for Japanese nuclear utility firms during the one-week event window and the subsequent four-week post-event window. Furthermore, while French and German nuclear utility and alternative energy stocks exhibit significant abnormal returns during the event window, we cannot confirm abnormal returns for U.S. stocks.
Resumo:
This study compares aboveground and belowground carbon stocks and tree diversity in different cocoa cultivation systems in Bolivia: monoculture, simple agroforestry, and successional agroforestry, as well as fallow as a control. Since diversified, agroforestry-based cultivation systems are often considered important for sustainable development, we also evaluated the links between carbon stocks and tree diversity, as well as the role of organic certification in transitioning from monoculture to agroforestry. Biomass, tree diversity, and soil physiochemical parameters were sampled in 15 plots measuring 48 × 48 m. Semi-structured interviews with 52 cocoa farmers were used to evaluate the role of organic certification and farmers’ organizations (e.g., cocoa cooperatives) in promoting tree diversity. Total carbon stocks in simple agroforestry systems (128.4 ± 20 Mg ha−1) were similar to those on fallow plots (125.2 ± 10 Mg ha−1). Successional agroforestry systems had the highest carbon stocks (143.7 ± 5.3 Mg ha−1). Monocultures stored significantly less carbon than all other systems (86.3 ± 4.0 Mg ha−1, posterior probability P(Diff > 0) of 0.000–0.006). Among shade tree species, Schizolobium amazonicum, Centrolobium ochroxylum, and Anadenanthera sp. accumulated the most biomass. High-value timber species (S. amazonicum, C. ochroxylum, Amburana cearensis, and Swietenia macrophylla) accounted for 22.0 % of shade tree biomass. The Shannon index and tree species richness were highest in successional agroforestry systems. Cocoa plots on certified organic farms displayed significantly higher tree species richness than plots on non-certified farms. Thus, expanding the coverage of organic farmers’ organizations may be an effective strategy for fostering transitions from monoculture to agroforestry systems.
Resumo:
Hatchery-reared Atlantic salmon Salmo salar smolts produced from captive-reared Dennys River and sea-run Penobscot River broodstock are released into their source rivers in Maine. The adult return rate of Dennys smolts is comparatively low, and disparity in smolt quality between stocks resulting from genetic or broodstock rearing effects is plausible. Smolt behavior and physiology were assessed during sequential 14-d trials conducted in seminatural annular tanks with circular flow. "Migratory urge'' (downstream movement) was monitored remotely using passive integrated transponder tags, and gill Na(+),K(+)-ATPase activity was measured at the beginning and end of the trials to provide an index of smolt development. The migratory urge of both stocks was low in early April, increased 20-fold through late May, and declined by the end of June. The frequency and seasonal distribution of downstream movement were independent of stock. In March and April, initial gill Na(+),K(+)-ATPase activities of Penobscot River smolts were lower than those of Dennys River smolts. For these trials, however, Penobscot River smolts increased enzyme activity after exposure to the tank, whereas Dennys River smolts did not, resulting in similar activities between stocks at the end of all trials. There was no clear relationship between migratory urge and gill Na(+),K(+)-ATPase activity. Gill Na(+),K(+)-ATPase activity of both stocks increased in advance of migratory urge and then declined while migratory urge was increasing. Maximum movement was observed from 2 h after sunset through 1 h after sunrise but varied seasonally. Dennys River smolts were slightly more nocturnal than Penobscot River smolts. These data suggest that Dennys and Penobscot River stocks are not markedly different in either physiological or behavioral expression of smolting.
Resumo:
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.