900 resultados para Stochastic agent-based models
Resumo:
Na modelagem de sistemas complexos, abordagens analíticas tradicionais com equações diferenciais muitas vezes resultam em soluções intratáveis. Para contornar este problema, Modelos Baseados em Agentes surgem como uma ferramenta complementar, onde o sistema é modelado a partir de suas entidades constituintes e interações. Mercados Financeiros são exemplos de sistemas complexos, e como tais, o uso de modelos baseados em agentes é aplicável. Este trabalho implementa um Mercado Financeiro Artificial composto por formadores de mercado, difusores de informações e um conjunto de agentes heterogêneos que negociam um ativo através de um mecanismo de Leilão Duplo Contínuo. Diversos aspectos da simulação são investigados para consolidar sua compreensão e assim contribuir com a concepção de modelos, onde podemos destacar entre outros: Diferenças do Leilão Duplo Contínuo contra o Discreto; Implicações da variação do spread praticado pelo Formador de Mercado; Efeito de Restrições Orçamentárias sobre os agentes e Análise da formação de preços na emissão de ofertas. Pensando na aderência do modelo com a realidade do mercado brasileiro, uma técnica auxiliar chamada Simulação Inversa, é utilizada para calibrar os parâmetros de entrada, de forma que trajetórias de preços simulados resultantes sejam próximas à séries de preços históricos observadas no mercado.
Resumo:
An agent based model for spatial electric load forecasting using a local movement approach for the spatiotemporal allocation of the new loads in the service zone is presented. The density of electrical load for each of the major consumer classes in each sub-zone is used as the current state of the agents. The spatial growth is simulated with a walking agent who starts his path in one of the activity centers of the city and goes to the limits of the city following a radial path depending on the different load levels. A series of update rules are established to simulate the S growth behavior and the complementarity between classes. The results are presented in future load density maps. The tests in a real system from a mid-size city show a high rate of success when compared with other techniques. The most important features of this methodology are the need for few data and the simplicity of the algorithm, allowing for future scalability. © 2009 IEEE.
Resumo:
Pós-graduação em Economia - FCLAR
Resumo:
Um dos aspectos regulatórios fundamentais para o mercado imobiliário no Brasil são os limites para obtenção de financiamento no Sistema Financeiro de Habitação. Esses limites podem ser definidos de forma a aumentar ou reduzir a oferta de crédito neste mercado, alterando o comportamento dos seus agentes e, com isso, o preço de mercado dos imóveis. Neste trabalho, propomos um modelo de formação de preços no mercado imobiliário brasileiro com base no comportamento dos agentes que o compõem. Os agentes vendedores têm comportamento heterogêneo e são influenciados pela demanda histórica, enquanto que os agentes compradores têm o seu comportamento determinado pela disponibilidade de crédito. Esta disponibilidade de crédito, por sua vez, é definida pelos limites para concessão de financiamento no Sistema Financeiro de Habitação. Verificamos que o processo markoviano que descreve preço de mercado converge para um sistema dinâmico determinístico quando o número de agentes aumenta, e analisamos o comportamento deste sistema dinâmico. Mostramos qual é a família de variáveis aleatórias que representa o comportamento dos agentes vendedores de forma que o sistema apresente um preço de equilíbrio não trivial, condizente com a realidade. Verificamos ainda que o preço de equilíbrio depende não só das regras de concessão de financiamento no Sistema Financeiro de Habitação, como também do preço de reserva dos compradores e da memória e da sensibilidade dos vendedores a alterações na demanda. A memória e a sensibilidade dos vendedores podem levar a oscilações de preços acima ou abaixo do preço de equilíbrio (típicas de processos de formação de bolhas); ou até mesmo a uma bifurcação de Neimark-Sacker, quando o sistema apresenta dinâmica oscilatória estável.
Resumo:
We present a stochastic agent-based model for the distribution of personal incomes in a developing economy. We start with the assumption that incomes are determined both by individual labour and by stochastic effects of trading and investment. The income from personal effort alone is distributed about a mean, while the income from trade, which may be positive or negative, is proportional to the trader's income. These assumptions lead to a Langevin model with multiplicative noise, from which we derive a Fokker-Planck (FP) equation for the income probability density function (IPDF) and its variation in time. We find that high earners have a power law income distribution while the low-income groups have a Levy IPDF. Comparing our analysis with the Indian survey data (obtained from the world bank website: http://go.worldbank.org/SWGZB45DN0) taken over many years we obtain a near-perfect data collapse onto our model's equilibrium IPDF. Using survey data to relate the IPDF to actual food consumption we define a poverty index (Sen A. K., Econometrica., 44 (1976) 219; Kakwani N. C., Econometrica, 48 (1980) 437), which is consistent with traditional indices, but independent of an arbitrarily chosen "poverty line" and therefore less susceptible to manipulation. Copyright © EPLA, 2010.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Material suplementar está disponível em: http://journal.frontiersin.org/article/10.3389/fpsyg. 2016.01509
Resumo:
Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja metriikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luotettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryhmä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Kokeiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa mallien toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutoksille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän muutoksille.
Stochastic particle models: mean reversion and burgers dynamics. An application to commodity markets
Resumo:
The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
Based on an order-theoretic approach, we derive sufficient conditions for the existence, characterization, and computation of Markovian equilibrium decision processes and stationary Markov equilibrium on minimal state spaces for a large class of stochastic overlapping generations models. In contrast to all previous work, we consider reduced-form stochastic production technologies that allow for a broad set of equilibrium distortions such as public policy distortions, social security, monetary equilibrium, and production nonconvexities. Our order-based methods are constructive, and we provide monotone iterative algorithms for computing extremal stationary Markov equilibrium decision processes and equilibrium invariant distributions, while avoiding many of the problems associated with the existence of indeterminacies that have been well-documented in previous work. We provide important results for existence of Markov equilibria for the case where capital income is not increasing in the aggregate stock. Finally, we conclude with examples common in macroeconomics such as models with fiat money and social security. We also show how some of our results extend to settings with unbounded state spaces.
Resumo:
Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.