680 resultados para Steel strip cleaning
Resumo:
Donateur : Vassal, Gabrielle Maud (1880-1959)
Resumo:
Recent findings suggest an association between exposure to cleaning products and respiratory dysfunctions including asthma. However, little information is available about quantitative airborne exposures of professional cleaners to volatile organic compounds deriving from cleaning products. During the first phases of the study, a systematic review of cleaning products was performed. Safety data sheets were reviewed to assess the most frequently added volatile organic compounds. It was found that professional cleaning products are complex mixtures of different components (compounds in cleaning products: 3.5 ± 2.8), and more than 130 chemical substances listed in the safety data sheets were identified in 105 products. The main groups of chemicals were fragrances, glycol ethers, surfactants, solvents; and to a lesser extent phosphates, salts, detergents, pH-stabilizers, acids, and bases. Up to 75% of products contained irritant (Xi), 64% harmful (Xn) and 28% corrosive (C) labeled substances. Hazards for eyes (59%), skin (50%) and by ingestion (60%) were the most reported. Monoethanolamine, a strong irritant and known to be involved in sensitizing mechanisms as well as allergic reactions, is frequently added to cleaning products. Monoethanolamine determination in air has traditionally been difficult and air sampling and analysis methods available were little adapted for personal occupational air concentration assessments. A convenient method was developed with air sampling on impregnated glass fiber filters followed by one step desorption, gas chromatography and nitrogen phosphorous selective detection. An exposure assessment was conducted in the cleaning sector, to determine airborne concentrations of monoethanolamine, glycol ethers, and benzyl alcohol during different cleaning tasks performed by professional cleaning workers in different companies, and to determine background air concentrations of formaldehyde, a known indoor air contaminant. The occupational exposure study was carried out in 12 cleaning companies, and personal air samples were collected for monoethanolamine (n=68), glycol ethers (n=79), benzyl alcohol (n=15) and formaldehyde (n=45). All but ethylene glycol mono-n-butyl ether air concentrations measured were far below (<1/10) of the Swiss eight hours occupational exposure limits, except for butoxypropanol and benzyl alcohol, where no occupational exposure limits were available. Although only detected once, ethylene glycol mono-n-butyl ether air concentrations (n=4) were high (49.5 mg/m3 to 58.7 mg/m3), hovering at the Swiss occupational exposure limit (49 mg/m3). Background air concentrations showed no presence of monoethanolamine, while the glycol ethers were often present, and formaldehyde was universally detected. Exposures were influenced by the amount of monoethanolamine in the cleaning product, cross ventilation and spraying. The collected data was used to test an already existing exposure modeling tool during the last phases of the study. The exposure estimation of the so called Bayesian tool converged with the measured range of exposure the more air concentrations of measured exposure were added. This was best described by an inverse 2nd order equation. The results suggest that the Bayesian tool is not adapted to predict low exposures. The Bayesian tool should be tested also with other datasets describing higher exposures. Low exposures to different chemical sensitizers and irritants should be further investigated to better understand the development of respiratory disorders in cleaning workers. Prevention measures should especially focus on incorrect use of cleaning products, to avoid high air concentrations at the exposure limits. - De récentes études montrent l'existence d'un lien entre l'exposition aux produits de nettoyages et les maladies respiratoires telles que l'asthme. En revanche, encore peu d'informations sont disponibles concernant la quantité d'exposition des professionnels du secteur du nettoyage aux composants organiques volatiles provenant des produits qu'ils utilisent. Pendant la première phase de cette étude, un recueil systématique des produits professionnels utilisés dans le secteur du nettoyage a été effectué. Les fiches de données de sécurité de ces produits ont ensuite été analysées, afin de répertorier les composés organiques volatiles les plus souvent utilisés. Il a été mis en évidence que les produits de nettoyage professionnels sont des mélanges complexes de composants chimiques (composants chimiques dans les produits de nettoyage : 3.5 ± 2.8). Ainsi, plus de 130 substances listées dans les fiches de données de sécurité ont été retrouvées dans les 105 produits répertoriés. Les principales classes de substances chimiques identifiées étaient les parfums, les éthers de glycol, les agents de surface et les solvants; dans une moindre mesure, les phosphates, les sels, les détergents, les régulateurs de pH, les acides et les bases ont été identifiés. Plus de 75% des produits répertoriés contenaient des substances décrites comme irritantes (Xi), 64% nuisibles (Xn) et 28% corrosives (C). Les risques pour les yeux (59%), la peau (50%) et par ingestion (60%) était les plus mentionnés. La monoéthanolamine, un fort irritant connu pour être impliqué dans les mécanismes de sensibilisation tels que les réactions allergiques, est fréquemment ajouté aux produits de nettoyage. L'analyse de la monoéthanolamine dans l'air a été habituellement difficile et les échantillons d'air ainsi que les méthodes d'analyse déjà disponibles étaient peu adaptées à l'évaluation de la concentration individuelle d'air aux postes de travail. Une nouvelle méthode plus efficace a donc été développée en captant les échantillons d'air sur des filtres de fibre de verre imprégnés, suivi par une étape de désorption, puis une Chromatographie des gaz et enfin une détection sélective des composants d'azote. Une évaluation de l'exposition des professionnels a été réalisée dans le secteur du nettoyage afin de déterminer la concentration atmosphérique en monoéthanolamine, en éthers de glycol et en alcool benzylique au cours des différentes tâches de nettoyage effectuées par les professionnels du nettoyage dans différentes entreprises, ainsi que pour déterminer les concentrations atmosphériques de fond en formaldéhyde, un polluant de l'air intérieur bien connu. L'étude de l'exposition professionnelle a été effectuée dans 12 compagnies de nettoyage et les échantillons d'air individuels ont été collectés pour l'éthanolamine (n=68), les éthers de glycol (n=79), l'alcool benzylique (n=15) et le formaldéhyde (n=45). Toutes les substances mesurées dans l'air, excepté le 2-butoxyéthanol, étaient en-dessous (<1/10) de la valeur moyenne d'exposition aux postes de travail en Suisse (8 heures), excepté pour le butoxypropanol et l'alcool benzylique, pour lesquels aucune valeur limite d'exposition n'était disponible. Bien que détecté qu'une seule fois, les concentrations d'air de 2-butoxyéthanol (n=4) étaient élevées (49,5 mg/m3 à 58,7 mg/m3), se situant au-dessus de la frontière des valeurs limites d'exposition aux postes de travail en Suisse (49 mg/m3). Les concentrations d'air de fond n'ont montré aucune présence de monoéthanolamine, alors que les éthers de glycol étaient souvent présents et les formaldéhydes quasiment toujours détectés. L'exposition des professionnels a été influencée par la quantité de monoéthanolamine présente dans les produits de nettoyage utilisés, par la ventilation extérieure et par l'emploie de sprays. Durant la dernière phase de l'étude, les informations collectées ont été utilisées pour tester un outil de modélisation de l'exposition déjà existant, l'outil de Bayesian. L'estimation de l'exposition de cet outil convergeait avec l'exposition mesurée. Cela a été le mieux décrit par une équation du second degré inversée. Les résultats suggèrent que l'outil de Bayesian n'est pas adapté pour mettre en évidence les taux d'expositions faibles. Cet outil devrait également être testé avec d'autres ensembles de données décrivant des taux d'expositions plus élevés. L'exposition répétée à des substances chimiques ayant des propriétés irritatives et sensibilisantes devrait être investiguée d'avantage, afin de mieux comprendre l'apparition de maladies respiratoires chez les professionnels du nettoyage. Des mesures de prévention devraient tout particulièrement être orientées sur l'utilisation correcte des produits de nettoyage, afin d'éviter les concentrations d'air élevées se situant à la valeur limite d'exposition acceptée.
Resumo:
Capital intensive industries in specialized niches of production have constituted solid ground for family firms in Spain , as evidenced by the experience of the iron and steel wire industries between 1870 and 2000. The embeddedness of these firms in their local and regional environments have allowed the creation of networks that, together with favourable institutional conditions, significantly explain the dominance of family entrepreneurship in iron and steel wire manufacturing in Spain, until the end of the 20 th century. Dominance of family firms at the regional level has not been not an obstacle for innovation in wire manufacturing in Spain, which has taken place even when institutional conditions blocked innovation and traditional networking. Therefore, economic theories about the difficulties dynastic family firms may have to perform appropriately in science-based industries must be questioned
Resumo:
Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.
Resumo:
Iowa has the same problem that confronts most states in the United States: many bridges constructed more than 20 years ago either have deteriorated to the point that they are inadequate for original design loads or have been rendered inadequate by changes in design/maintenance standards or design loads. Inadequate bridges require either strengthening or posting for reduced loads. A sizeable number of single span, composite concrete deck - steel I beam bridges in Iowa currently cannot be rated to carry today's design loads. Various methods for strengthening the unsafe bridges have been proposed and some methods have been tried. No method appears to be as economical and promising as strengthening by post-tensioning of the steel beams. At the time this research study was begun, the feasibility of posttensioning existing composite bridges was unknown. As one would expect, the design of a bridge-strengthening scheme utilizing post-tensioning is quite complex. The design involves composite construction stressed in an abnormal manner (possible tension in the deck slab), consideration of different sizes of exterior and interior beams, cover-plated beams already designed for maximum moment at midspan and at plate cut-off points, complex live load distribution, and distribution of post-tensioningforces and moments among the bridge beams. Although information is available on many of these topics, there is miminal information on several of them and no information available on the total design problem. This study, therefore, is an effort to gather some of the missing information, primarily through testing a half-size bridge model and thus determining the feasibility of strengthening composite bridges by post-tensioning. Based on the results of this study, the authors anticipate that a second phase of the study will be undertaken and directed toward strengthening of one or more prototype bridges in Iowa.
Resumo:
Capital intensive industries in specialized niches of production have constituted solid ground for family firms in Spain , as evidenced by the experience of the iron and steel wire industries between 1870 and 2000. The embeddedness of these firms in their local and regional environments have allowed the creation of networks that, together with favourable institutional conditions, significantly explain the dominance of family entrepreneurship in iron and steel wire manufacturing in Spain, until the end of the 20 th century. Dominance of family firms at the regional level has not been not an obstacle for innovation in wire manufacturing in Spain, which has taken place even when institutional conditions blocked innovation and traditional networking. Therefore, economic theories about the difficulties dynastic family firms may have to perform appropriately in science-based industries must be questioned
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
Heat straightening of steel beams on bridges struck by over height trucks has become common practice in recent years in Iowa. A study of the effects of this heat straightening on the steel beams thus straightened is needed. Appropriate samples for mechanical and metallurgical tests were cut from the same rolled beam from the end which was heated and the end which was not heated and the test results were compared. The test results showed beyond doubt that the steel was being heated beyond the permitted temperature and that the impact properties are being drastically reduced by the current method of heat straightening.
Resumo:
Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. In reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 1) presents the results of Concept 1 - Steel Beam Precast Units. Concept 2 - Modification of the Beam-in-Slab Bridge is presented in Volume 2. Concept 1, involves the fabrication of precast units (two steel beams connected by a concrete slab) by county work forces. Deck thickness is limited so that the units can be fabricated at one site and then transported to the bridge site where they are connected and the remaining portion of the deck placed. Since Concept 1 bridge is primarily intended for use on low-volume roads, the precast units can be constructed with new or used beams. In the experimental part of the investigation, there were three types of static load tests: small scale connector tests, "handling strength" tests, and service and overload tests of a model bridge. Three finite element models for analyzing the bridge in various states of construction were also developed. Small scale connector tests were completed to determine the best method of connecting the precast double-T (PCDT) units. "Handling strength" tests on an individual PCDT unit were performed to determine the strength and behavior of the precast unit in this configuration. The majority of the testing was completed on the model bridge [L=9,750 mm (32 ft), W=6,400 mm (21 ft)] which was fabricated using the precast units developed. Some of the variables investigated in the model bridge tests were number of connectors required to connect adjacent precast units, contribution of diaphragms to load distribution, influence of position of diaphragms on bridge strength and load distribution, and effect of cast-in-place portion of deck on load distribution. In addition to the service load tests, the bridge was also subjected to overload conditions. Using the finite element models developed, one can predict the behavior and strength of bridges similar to the laboratory model as well as design them. Concept 1 has successfully passed all laboratory testing; the next step is to field test it.
Resumo:
This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.
Resumo:
The need to upgrade a large number of understrength and obsolete bridges in the U.S. has been well documented in the literature. Through several Iowa DOT projects, the concept of strengthening simple-span bridges by post-tensioning has been developed. The purpose of the project described in this report was to investigate the use of post-tensioning for strengthening continuous composite bridges. In a previous, successfully completed investigation, the feasibility of strengthening continuous, composite bridges by post-tensioning was demonstrated on a laboratory 1/3-scale-model bridge (3 spans: 41 ft 11 in. x 8 ft 8 in.). This project can thus be considered the implementation phase. The bridge selected for strengthening was in Pocahontas County near Fonda, Iowa, on County Road N28. With finite element analysis, a post-tensioning system was developed that required post-tensioning of the positive moment regions of both the interior and exterior beams. During the summer of 1988, the strengthening system was installed along with instrumentation to determine the bridge's response and behavior. Before and after post-tensioning, the bridge was subjected to truck loading (1 or 2 trucks at various predetermined critical locations) to determine the effectiveness of the strengthening system. The bridge, with the strengthening system in place, was inspected approximately every three months to determine any changes in its appearance or behavior. In 1989, approximately one year after the initial strengthening, the bridge was retested to identify any changes in its behavior. Post-tensioning forces were removed to reveal any losses over the one-year period. Post-tensioning was reapplied to the bridge, and the bridge was tested using the same loading program used in 1988. Except for at a few locations, stresses were reduced in the bridge the desired amount. At a few locations flexural stresses in the steel beams are still above 18 ksi, the allowable inventory stress for A7 steel. Although maximum stresses are above the inventory stress by about 2 ksi, they are about 5 ksi below the allowable operating stress; therefore, the bridge no longer needs to be load-posted.
Resumo:
The Phase I research, Iowa Department of Transportation (IDOT) Project HR-214, "Feasibility Study of Strengthening Existing Single Span Steel Beam Concrete Deck Bridges," verified that post-tensioning can be used to provide strengthening of the composite bridges under investigation. Phase II research, reported here, involved the strengthening of two full-scale prototype bridges - one a prototype of the model bridge tested during Phase I and the other larger and skewed. In addition to the field work, Phase II also involved a considerable amount of laboratory work. A literature search revealed that only minimal data existed on the angle-plus-bar shear connectors. Thus, several specimens utilizing angle-plus-bar, as well as channels, studs and high strength bolts as shear connectors were fabricated and tested. To obtain additional shear connector information, the bridge model of Phase I was sawed into four composite concrete slab and steel beam specimens. Two of the resulting specimens were tested with the original shear connection, while the other two specimens had additional shear connectors added before testing. Although orthotropic plate theory was shown in Phase I to predict vertical load distribution in bridge decks and to predict approximate distribution of post-tensioning for right-angle bridges, it was questioned whether the theory could also be used on skewed bridges. Thus, a small plexiglas model was constructed and used in vertical load distribution tests and post-tensioning force distribution tests for verification of the theory. Conclusions of this research are as follows: (1) The capacity of existing shear connectors must be checked as part of a bridge strengthening program. Determination of the concrete deck strength in advance of bridge strengthening is also recommended. (2) The ultimate capacity of angle-plus-bar shear connectors can be computed on the basis of a modified AASHTO channel connector formula and an angle-to-beam weld capacity check. (3) Existing shear connector capacity can be augmented by means of double-nut high strength bolt connectors. (4) Post-tensioning did not significantly affect truck load distribution for right angle or skewed bridges. (5) Approximate post-tensioning and truck load distribution for actual bridges can be predicted by orthotropic plate theory for vertical load; however, the agreement between actual distribution and theoretical distribution is not as close as that measured for the laboratory model in Phase I. (6) The right angle bridge exhibited considerable end restraint at what would be assumed to be simple support. The construction details at bridge abutments seem to be the reason for the restraint. (7) The skewed bridge exhibited more end restraint than the right angle bridge. Both skew effects and construction details at the abutments accounted for the restraint. (8) End restraint in the right angle and skewed bridges reduced tension strains in the steel bridge beams due to truck loading, but also reduced the compression strains caused by post-tensioning.
Resumo:
The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.
Resumo:
The need to upgrade understrength bridges in the United States has been well documented in the literature. The concept of strengthening steel stringer bridges in Iowa has been developed through several Iowa DOT projects. The objective of the project described in this report was to investigate the use of one such strengthening system on a three-span continuous steel stringer bridge in the field. In addition, a design methodology was developed to assist bridge engineers with designing a strengthening system to obtain the desired stress reductions. The bridge selected for strengthening was in Cerro Gordo County near Mason City, Iowa on County Road B65. The strengthening system was designed to remove overstresses that occurred when the bridge was subjected to Iowa legal loads. A two part strengthening system was used: post-tensioning the positive moment regions of all the stringers and superimposed trusses in the negative moment regions of the two exterior stringers at the two piers. The strengthening system was installed in the summers of 1992 and 1993. In the summer of 1993, the bridge was load tested before and after the strengthening system was activated. The load test results indicate that the strengthening system was effective in reducing the overstress in both the negative and positive regions of the stringers. The design methodology that was developed includes a procedure for determining the magnitude of post-tensioning and truss forces required to strengthen a given bridge. This method utilizes moment and force fractions to determine the distribution of strengthening axial forces and moments throughout the bridge. Finite element analysis and experimental results were used in the formulation and calibration of the methodology. A spreadsheet was developed to facilitate the calculation of these required strengthening forces.