987 resultados para Sponge Amphimedon Viridis
Resumo:
Secondary metabolites synthesised by sessile invertebrates appear to play a role in creating and maintaining space on hard substrata by repelling competitors. In this study, we investigated the responses of the larvae of the ascidian Herdmania curvata to haliclonacyclamine A (HA), the major component of a suite of cytotoxic alkaloids extracted from the sponge Haliclona sp. 628. Both Haliclona sp. 628 and Herdmania curvata inhabit the crest and slope of Heron Island Reef. High rates of settlement were induced in competent H. curvata larvae by a range of concentrations of HA, all lower than that naturally occurring in the sponge. HA did not induce precompetent larvae to settle. Although early metamorphosis of HA-induced larvae was normal, larvae exposed to all but the lowest concentration of HA were developmentally arrested after completion of tail resorption, at about 4 h after the initiation of metamorphosis. These postlarvae underwent extensive cellular necrosis within 24 h. We also demonstrate that the addition of a transcriptional inhibitor, actinomycin D, to larvae also causes inhibition of metamorphosis after tail resorption is completed. Analyses of incorporation of radiolabelled nucleotides to measure levels of transcription during normal development and after the addition of the transcriptional inhibitor indicate that there is a significant burst of transcriptional activity just after tail resorption is completed. Despite inhibiting metamorphosis at the same stage as actinomycin D, HA increases initial rates of RNA synthesis after induction of metamorphosis in a manner similar to that observed in normal postlarvae until the onset of cellular necrosis. We conclude that HA initially induces H. curvata larvae to settle and progress through early metamorphosis possibly by engaging the same pathway as other artificial and environmental cues but subsequently inhibits completion of metamorphosis, resulting in death of the postlarvae. Since HA does not affect overall transcription rates, it appears to disrupt another important developmental process during early metamorphosis.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
An unprecedented series of ecological disturbances have been recurring within Florida Bay since the summer of 1987. Persistent and widespread phytoplankton and cyanobacteria blooms have coincided with the large scale decimation of sponge communities. One hypothesis is that the large scale loss of suspension-feeding sponges has rendered the Florida Bay ecosystem susceptible to these recurring blooms. The primary objective of this study was to experimentally evaluate the potential for suspension-feeding sponges to control nuisance phytoplankton blooms within Florida Bay prior to a large sponge die-off event. To achieve this objective, we determined the extent and biomass of the surviving sponge community in the different basins of Florida Bay. Many areas within Florida Bay possessed sponge densities and biomasses of 1 to 3 ind. m–2 or 100 to 300 g m–2 respectively. The dominant species includedSpheciospongia vesparia, Chondrilla nucula, Cinachyra alloclada, Tedania ignis and Ircinia sp., which accounted for 68% of individual sponges observed and 88% of sponge biomass. Laboratory grazing rates of these dominant sponges were experimentally determined on 4 different algal food treatments: a monoculture of cyanobacteria Synechococcus elongatus, a monoculture of the diatom Cyclotella choctawhatcheeana, a monoculture of the dinoflagellate Prorocentrum hoffmanianum, and an equal volume of the 3 monocultures combined. To estimate the impact of a mass sponge mortality event on the system-wide filtration rate of Florida Bay, we combined estimates of the current sponge biomass and laboratory sponge filtration rates with estimates of mean volumes of the sub-basins of Florida Bay. This study implies that the current blooms occurring within the central region of Florida Bay can be explained by the loss of the dominant suspension feeder in this system, and there is no need to invoke a new addition of nutrients within this region for the blooms to occur.
Resumo:
Perna viridis from the Bay of Jakarta was exposed to different concentrations (0, 21.6, 216 and 2160 mg/l) of PVC microplastic particles for 91 days in a controlled laboratory experiment. Particles were negatively buoyant, but were regularly resuspended from the sediment, mimicking tidal events. The particles were contaminated with the organic pollutant fluoranthene, except for one control group, which was exposed to the highest plastic concentration (2160 mg/l) but with clean particles. Within the 91 days survival was monitored. After 40 - 44 days of the exposure, physiological responses of all mussel individuals were measured. Respiration rates were measured as the decrease of oxygen in a sealed container in 20 minutes. Clearance rates were determined by measuring the depletion of algal cells in the water in 30 minutes. Byssus production was assessed by counting the number of newly formed byssus discs within 24 hours.
Resumo:
Siliceous sponges have survived pre-historical mass extinction events caused by ocean acidification and recent studies suggest that siliceous sponges will continue to resist predicted increases in ocean acidity. In this study, we monitored silica biomineralization in the Hawaiian sponge Mycale grandis under predicted pCO2 and sea surface temperature scenarios for 2100. Our goal was to determine if spicule biomineralization was enhanced or repressed by ocean acidification and thermal stress by monitoring silica uptake rates during short-term (48 h) experiments and comparing biomineralized tissue ratios before and after a long-term (26 d) experiment. In the short-term experiment, we found that silica uptake rates were not impacted by high pCO2 (1050 µatm), warmer temperatures (27°C), or combined high pCO2 with warmer temperature (1119 µatm; 27°C) treatments. The long-term exposure experiments revealed no effect on survival or growth rates of M. grandis to high pCO2 (1198 µatm), warmer temperatures (25.6°C), or combined high pCO2 with warmer temperature (1225 µatm, 25.7°C) treatments, indicating that M. grandis will continue to prosper under predicted increases in pCO2 and sea surface temperature. However, ash-free dry weight to dry weight ratios, subtylostyle lengths, and silicified weight to dry weight ratios decreased under conditions of high pCO2 and combined pCO2 warmer temperature treatments. Our results show that rising ocean acidity and temperature have marginal negative effects on spicule biomineralization and will not affect sponge survival rates of M. grandis.
Resumo:
The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta 18Oe, delta 18ODIC) and carbon (The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta18Oe, delta18ODIC) and carbon (delta13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (Delta delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.