938 resultados para Spinal Bifida Cystica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aims to identify risk constellations for symptomatic spinal cord malperfusion in patients undergoing extensive stent-graft coverage of the thoracic aorta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study involving 170 patients suffering from non-specific low back pain was to test the validity of the spinal function sort (SFS) in a European rehabilitation setting. The SFS, a picture-based questionnaire, assesses perceived functional ability of work tasks involving the spine. All measurements were taken by a blinded research assistant; work status was assessed with questionnaires. Our study demonstrated a high internal consistency shown by a Cronbach's alpha of 0.98, reasonable evidence for unidimensionality, spearman correlations of >0.6 with work activities, and discriminating power for work status at 3 and 12 months by ROC curve analysis (area under curve = 0.760 (95% CI 0.689-0.822), respectively, 0.801 (95% CI 0.731-0.859). The standardised response mean within the two treatment groups was 0.18 and -0.31. As a result, we conclude that the perceived functional ability for work tasks can be validly assessed with the SFS in a European rehabilitation setting in patients with non-specific low back pain, and is predictive for future work status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the excitability and recruitment of spinal motoneurons in human sleep. The main objective was to assess whether supraspinal inhibition affects the different subpopulations of the compound spinal motoneuron pool in the same way or rather in a selective fashion in the various sleep stages. To this end, we studied F-conduction velocities (FCV) and F-tacheodispersion alongside F-amplitudes and F-persistence in 22 healthy subjects in sleep stages N2, N3 (slow-wave sleep), REM and in wakefulness. Stimuli were delivered on the ulnar nerve, and F-waves were recorded from the first dorsal interosseus muscle. Repeated sets of stimuli were stored to obtain at least 15 F-waves for each state of vigilance. F-tacheodispersion was calculated based on FCVs using the modified Kimura formula. Confirming the only previous study, excitability of spinal motoneurons was generally decreased in all sleep stages compared with wakefulness as indicated by significantly reduced F-persistence and F-amplitudes. More importantly, F-tacheodispersion showed a narrowed range of FCV in all sleep stages, most prominently in REM. In non-REM, this narrowed range was associated with a shift towards significantly decreased maximal FCV and mean FCV as well as with a trend towards lower minimal FCV. In REM, the lowering of mean FCV was even more pronounced, but contrary to non-REM sleep without a shift of minimal and maximal FCV. Variations in F-tacheodispersion between sleep stages suggest that different supraspinal inhibitory neuronal circuits acting on the spinal motoneuron pool may contribute to muscle hypotonia in human non-REM sleep and to atonia in REM sleep.