914 resultados para Speech Recognition System using LPC
Resumo:
The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^
Resumo:
Acknowledgements. This work was mainly funded by the EU FP7 CARBONES project (contracts FP7-SPACE-2009-1-242316), with also a small contribution from GEOCARBON project (ENV.2011.4.1.1-1-283080). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program; DE-FG02-04ER63917 and DE-FG02-04ER63911), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. Philippe Ciais acknowledges support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. The authors wish to thank M. Jung for providing access to the GPP MTE data, which were downloaded from the GEOCARBON data portal (https://www.bgc-jena.mpg.de/geodb/projects/Data.php). The authors are also grateful to computing support and resources provided at LSCE and to the overall ORCHIDEE project that coordinate the development of the code (http://labex.ipsl.fr/orchidee/index.php/about-the-team).
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
[EN]An active vision system to perform tracking of moving objects in real time is described. The main goal is to obtain a system integrating off-the-self components. These components includes a stereoscopic robotic-head, as active perception hardware; a DSP based board SDB C80, as massive data processor and image acquisition board; and finally, a Pentium PC running Windows NT that interconnects and manages the whole system. Real-time is achieved taking advantage of the special architecture of DSP. An evaluation of the performance is included.
Resumo:
We propose and demonstrate, for the first time to our best knowledge, the use of a 45° tilted fiber grating (TFG) as an infiber lateral diffraction element in an efficient and fiber-compatible spectrally encoded imaging (SEI) system. Under proper polarization control, the TFG has significantly enhanced diffraction efficiency (93.5%) due to strong tilted reflection. Our conceptually new fiber-topics-based design eliminates the need for bulky and lossy free-space diffraction gratings, significantly reduces the volume and cost of the imaging system, improves energy efficiency, and increases system stability. As a proof-of-principle experiment, we use the proposed system to perform an one dimensional (1D) line scan imaging of a customer-designed three-slot sample and the results show that the constructed image matches well with the actual sample. The angular dispersion of the 45° TFG is measured to be 0.054°/nm and the lateral resolution of the SEI system is measured to be 28 μm in our experiment.
Resumo:
OBJECTIVE: Cochlear implantation (CI) is a standard treatment for severe-profound sensorineural hearing loss (SNHL). However, consensus has yet to be reached on its effectiveness for hearing loss caused by auditory neuropathy spectrum disorder (ANSD). This review aims to summarize and synthesize current evidence of the effectiveness of CI in improving speech recognition in children with ANSD. DESIGN: Systematic review. STUDY SAMPLE: A total of 27 studies from an initial selection of 237. RESULTS: All selected studies were observational in design, including case studies, cohort studies, and comparisons between children with ANSD and SNHL. Most children with ANSD achieved open-set speech recognition with their CI. Speech recognition ability was found to be equivalent in CI users (who previously performed poorly with hearing aids) and hearing-aid users. Outcomes following CI generally appeared similar in children with ANSD and SNHL. Assessment of study quality, however, suggested substantial methodological concerns, particularly in relation to issues of bias and confounding, limiting the robustness of any conclusions around effectiveness. CONCLUSIONS: Currently available evidence is compatible with favourable outcomes from CI in children with ANSD. However, this evidence is weak. Stronger evidence is needed to support cost-effective clinical policy and practice in this area.
Resumo:
A comunicação verbal humana é realizada em dois sentidos, existindo uma compreensão de ambas as partes que resulta em determinadas considerações. Este tipo de comunicação, também chamada de diálogo, para além de agentes humanos pode ser constituído por agentes humanos e máquinas. A interação entre o Homem e máquinas, através de linguagem natural, desempenha um papel importante na melhoria da comunicação entre ambos. Com o objetivo de perceber melhor a comunicação entre Homem e máquina este documento apresenta vários conhecimentos sobre sistemas de conversação Homemmáquina, entre os quais, os seus módulos e funcionamento, estratégias de diálogo e desafios a ter em conta na sua implementação. Para além disso, são ainda apresentados vários sistemas de Speech Recognition, Speech Synthesis e sistemas que usam conversação Homem-máquina. Por último são feitos testes de performance sobre alguns sistemas de Speech Recognition e de forma a colocar em prática alguns conceitos apresentados neste trabalho, é apresentado a implementação de um sistema de conversação Homem-máquina. Sobre este trabalho várias ilações foram obtidas, entre as quais, a alta complexidade dos sistemas de conversação Homem-máquina, a baixa performance no reconhecimento de voz em ambientes com ruído e as barreiras que se podem encontrar na implementação destes sistemas.
Resumo:
The use of Cyber Physical Systems (CPS) to optimise industrial energy systems is an approach which has the potential to positively impact on manufacturing sector energy efficiency. The need to obtain data to facilitate the implementation of a CPS in an industrial energy system is however a complex task which is often implemented in a non-standardised way. The use of the 5C CPS architecture has the potential to standardise this approach. This paper describes a case study where data from a Combined Heat and Power (CHP) system located in a large manufacturing company was fused with grid electricity and gas models as well as a maintenance cost model using the 5C architecture with a view to making effective decisions on its cost efficient operation. A control change implemented based on the cognitive analysis enabled via the 5C architecture implementation has resulted in energy cost savings of over €7400 over a four-month period, with energy cost savings of over €150,000 projected once the 5C architecture is extended into the production environment.
Resumo:
Sistemas de reconhecimento e síntese de voz são constituídos por módulos que dependem da língua e, enquanto existem muitos recursos públicos para alguns idiomas (p.e. Inglês e Japonês), os recursos para Português Brasileiro (PB) ainda são escassos. Outro aspecto é que, para um grande número de tarefas, a taxa de erro dos sistemas de reconhecimento de voz atuais ainda é elevada, quando comparada à obtida por seres humanos. Assim, apesar do sucesso das cadeias escondidas de Markov (HMM), é necessária a pesquisa por novos métodos. Este trabalho tem como motivação esses dois fatos e se divide em duas partes. A primeira descreve o desenvolvimento de recursos e ferramentas livres para reconhecimento e síntese de voz em PB, consistindo de bases de dados de áudio e texto, um dicionário fonético, um conversor grafema-fone, um separador silábico e modelos acústico e de linguagem. Todos os recursos construídos encontram-se publicamente disponíveis e, junto com uma interface de programação proposta, têm sido usados para o desenvolvimento de várias novas aplicações em tempo-real, incluindo um módulo de reconhecimento de voz para a suíte de aplicativos para escritório OpenOffice.org. São apresentados testes de desempenho dos sistemas desenvolvidos. Os recursos aqui produzidos e disponibilizados facilitam a adoção da tecnologia de voz para PB por outros grupos de pesquisa, desenvolvedores e pela indústria. A segunda parte do trabalho apresenta um novo método para reavaliar (rescoring) o resultado do reconhecimento baseado em HMMs, o qual é organizado em uma estrutura de dados do tipo lattice. Mais especificamente, o sistema utiliza classificadores discriminativos que buscam diminuir a confusão entre pares de fones. Para cada um desses problemas binários, são usadas técnicas de seleção automática de parâmetros para escolher a representaçãao paramétrica mais adequada para o problema em questão.