972 resultados para Sound Walks
Resumo:
While evidence for optimal random search patterns, known as Lévy walks, in empirical movement data is mounting for a growing list of taxa spanning motile cells to humans, there is still much debate concerning the theoretical generality of Lévy walk optimisation. Here, using a new and robust simulation environment, we investigate in the most detailed study to date (24×10(6) simulations) the foraging and search efficiencies of 2-D Lévy walks with a range of exponents, target resource distributions and several competing models. We find strong and comprehensive support for the predictions of the Lévy flight foraging hypothesis and in particular for the optimality of inverse square distributions of move step-lengths across a much broader range of resource densities and distributions than previously realised. Further support for the evolutionary advantage of Lévy walk movement patterns is provided by an investigation into the 'feast and famine' effect, with Lévy foragers in heterogeneous environments experiencing fewer long 'famines' than other types of searchers. Therefore overall, optimal Lévy foraging results in more predictable resources in unpredictable environments.
Resumo:
Efficient searching is crucial for timely location of food and other resources. Recent studies show diverse living animals employ a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behaviour and the search strategies of extinct organisms. Here we show using simulations of self-avoiding trace fossil trails that randomly introduced strophotaxis (U-turns) – initiated by obstructions such as ¬¬¬self-trail avoidance or innate cueing – leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts optimal Lévy searches can emerge from simple behaviours observed in fossil trails. We then analysed fossilized trails of benthic marine organisms using a novel path analysis technique and find the first evidence of Lévy-like search strategies in extinct animals. Our results show that simple search behaviours of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterising mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest Lévy-like behaviour has been employed by foragers since at least the Eocene but may have a more ancient origin, which could explain recent widespread observations of such patterns among modern taxa.
Resumo:
The ascidian Corella eumyota, originally from the Southern Hemisphere, was first reported in the Northern Hemisphere in Brittany, France, in 2002. Since then, it has been recorded in Spain, Ireland, the south coast of England and South Wales. Most European records to date have been from artificial habitats such as marinas. In Plymouth, England, C. eumyota was first found in two marinas in 2005 but individuals were soon also detected in small numbers on nearby shores. Shore surveys in March and August of 2008 indicated that C. eumyota has established reproductive populations on natural and semi-natural shores of Plymouth Sound and the adjacent coastline, largely restricted to relatively sheltered sites in the lower reaches of estuaries. At these sites it is generally the most abundant non-colonial ascidian. The species clearly has the capacity to become a significant component of the biota of sheltered shores in the Northern Hemisphere.
Resumo:
We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoherence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the decoherence parameters.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.