944 resultados para Sol-gel synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sol-gel coating method for the preparation of extractive phase on bars used in sorptive microextraction is described. The extraction phase of poly(dimethylsiloxane) is partially crosslinked with the sol-gel network, and the most part is physically incorporated in the network. Three aging steps at different temperatures are applied to complete the crosslinking process. Thirty-micrometer-thick coating layer is obtained by one coating process. The improved coating shows good thermal stability up to 300degreesC. Spiked aqueous samples containing n-alkanes, polycyclic aromatic hydrocarbons and organophosphorus pesticides were analyzed by using the sorptive bars and GC. The results demonstrate that it is suitable for both aploar and polar analytes. The detection limit for chrysene is 7.44 ng/L, 0.74 ng/L for C-19 and 0.9 ng/L for phorate. The extraction equilibration can be reached in less than 15 min by supersonic extraction with the bars of 30 mum coating layer. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sol-gel process has been developed to prepare polyimide (PI)/Al2O3 hybrid films with different contents of Al2O3 based on pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) as monomers. FESEM and TEM images indicated that Al2O3 particles are relatively well dispersed in the polyimide matrix after ultrasonic treatment of the sol from aluminum isopropoxide and thermal imidization of the gel film. The dimensional stability, thermal stability, mechanical properties of hybrid PI films were improved obviously by an addition of adequate Al2O3 content, whereas, dielectric property and the elongation at break decreased with the increase of Al2O3 content. Surprisingly, the corona-resistance property of hybrid film was improved greatly with increasing Al2O3 content within certain range as compared with pure PI film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional YVO4:Ln and Y(V, P)O-4:Ln nanofibers and quasi-one-dimensional YVO4:Ln microbelts (Ln = Eu3+, Sm3+, Dy3+) have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)Cl-2) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy)(3)Cl-2 immobilized sol-gel (Ru(bpy)(3)Cl-2/sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy)(3)Cl-2 was successfully incorporated into the silica sol-gel film. it was found that many irregular Ru(bpy)(3)Cl-2/sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemiluminescent glucose biosensor was proposed based on gold nanoparticle-catalyzed luminol electrochemiluminescence (ECL). Gold nanoparticles were self-assembled onto silica sol-gel network, and then glucose oxidase was adsorbed on the surface of gold nanoparticles. The surface assembly process and the electrochemistry and ECL behaviors of the biosensor were investigated. The assembled gold nanoparticles could efficiently electrocatalyze luminol ECL ECL intensity of the biosensor depended on scan rate, luminol concentration, and size of gold nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YPO4 nano/microcrystals with multiform crystal phases and morphologies, such as hexagonal nano/submicroprisms, spherical-like nanoparticles, and nanorods with different length/diameter ratios as well as tetragonal nanospindles, have been synthesized via a facile hydrothermal route. A series of controlled experiments indicate that the pH values in the initial solution, phosphorus sources, and the organic additive trisodium citrate (Cit(3-)) are responsible for crystal phase and shape determination of final products. It is found that Cit(3-) as a ligand and shape modifier has the dynamic effect by adjusting the growth rate of different facets under different experimental conditions, resulting in the formation of various geometries of the final products. The possible formation mechanisms for products with diverse architectures have been presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodisperse hexagonal Ln(OH)(3) (Ln = Eu, Sm) submicrospindles with uniform morphology and size have been Successfully synthesized in a large scale via a Facile aqueous solution route from the mixture of aqueous solutions or LnCl(3) and NaOH at 5 degrees C without using any surfactant or template. The as-synthesized products are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The SEM and TEM images show that the as-formed Ln(OH)(3) samples have a spindlelike shape with an equatorial diameter of 80-200 nm and a length of 500-900 nm, which are aggregates of even smaller nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodisperse rare-earth ion (Eu3+, Ce3+, Tb3+) doped LaPO4 particles with oval morphology were successfully prepared through a facile solvothermal process without further hear treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are well crystalline at 180 degrees C and assigned to the monoclinic monazite-type structure of the LaPO4 phase. It has been shown that all the as-synthesized samples show perfectly oval morphology with narrow size distribution. The possible growth mechanism of the LapO(4):Ln has been investigated as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, Y2O3 powder phosphors without metal activators were successfully prepared by the sol-gel method. The obtained sample shows an intense bluish-white emission (ranging from 350 to 600 nm, centered at 416 nm) under a wide range of UV light excitation (235-400 nm). The chromaticity coordinates of the sample are x = 0.159, y = 0.097, and the quantum yield is as high as 64.6%, which is a high value among the phosphor family without metal activators. The luminescent mechanisms have been ascribed to the carbon impurities in the Y2O3 host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional Mn2+-doped Zn2SiO4 rnicrobelts and microfibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The XRD and DTA results show that the Zn2SiO4 phase begins to crystallize at 800 degrees C and crystallizes completely around 1000 degrees C. SEM results indicate that the as-prepared microbelts/fibers are smooth, whose diameters decrease with increasing the annealing temperature. The average diameter of the Zn2SiO4:Mn2+ microfibers annealed at 1000 degrees C is 0.32 mu m, and their lengths reach up to several millimeters. The average width and thickness of the Zn2SiO4:Mn2+ microbelts fired at 1000 degrees C are around 0.48 and 0.24 mu m, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).