949 resultados para Soil physical and chemical characters
Resumo:
Properties of a claim loam soil, collected in Aranjuez (Madrid) and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control); soil + 50 t ha-1 of animal manure (E50); soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM); soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30) and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM). Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC) of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM) intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.
Resumo:
Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.
Resumo:
The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR), and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd) under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC) were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR). The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.
Resumo:
Inadequate usage can degrade natural resources, particularly soils. More attention has been paid to practices aiming at the recovery of degraded soils in the last years, e.g, the use of organic fertilizers, liming and introduction of species adapted to adverse conditions. The purpose of this study was therefore to investigate the recovery of physical properties of a Red Latosol (Oxisol) degraded by the construction of a hydroelectric power station. In the study area, a soil layer about 8m thick had been withdrawn by heavy machines leading not only to soil compaction, but resulting in high-degree degradation. The experiment was arranged in a completely randomized design with nine treatments and four replications. The treatments consisted of: 1- soil mobilization by tilling (to ensure the effect of mechanical mobilization in all treatments) without planting, but growth of spontaneous vegetation; 2- Black velvet bean (Stizolobium aterrimum Piper & Tracy); 3- Pigeonpea (Cajanus cajan (L.) DC); 4- Liming + black velvet bean; 5-Liming + pigeonpea until 1994, when replaced by jack bean (Canavalia ensiformis); 6- Liming + gypsum + black velvet bean; 7- Liming + gypsum + pigeonpea until 1994, when replaced by jack bean; and two controls as reference: 8- Native Cerrado vegetation and 9- bare soil (no tilling and no planting), left under natural conditions and in this situation, without spontaneous vegetation. In treatments 1 through 7, the soil was tilled. Treatments were installed in 1992 and left unmanaged for seven years, until brachiaria (Brachiaria decumbens) was planted in all plots in 1999. Seventeen years after implantation, the properties soil macroporosity, microporosity, total porosity, bulk density and aggregate stability were assessed in the previously described treatments in the soil layers 0.00-0.10; 0.10-0.20 and 0.20-0.40 m, and soil Penetration Resistance and soil moisture in 0.00-0.15 and 0.15-0.30 m. The plants were evaluated for: brachiaria dry matter and spontaneous growth of native tree species in the plots as of 2006. Results were analyzed by variance analysis and Tukey´s test at 5 % for mean comparison. In all treatments, except for the bare soil (no recovery measures), ongoing recovery of the degraded soil physical properties was observed. Macroporosity, soil bulk density and total porosity were good soil quality indicators. The occurrence of spontaneous native species indicated the soil recovery process. The best adapted species was Machaerium acutifolium Vogel, with the largest number of plants and most advanced development; the dry matter production of B. decumbens in recovering soil was similar to normal conditions, evidencing soil recovery.
Resumo:
The modeling and estimation of the parameters that define the spatial dependence structure of a regionalized variable by geostatistical methods are fundamental, since these parameters, underlying the kriging of unsampled points, allow the construction of thematic maps. One or more atypical observations in the sample data can affect the estimation of these parameters. Thus, the assessment of the combined influence of these observations by the analysis of Local Influence is essential. The purpose of this paper was to propose local influence analysis methods for the regionalized variable, given that it has n-variate Student's t-distribution, and compare it with the analysis of local influence when the same regionalized variable has n-variate normal distribution. These local influence analysis methods were applied to soil physical properties and soybean yield data of an experiment carried out in a 56.68 ha commercial field in western Paraná, Brazil. Results showed that influential values are efficiently determined with n-variate Student's t-distribution.
Resumo:
Sugarcane, which involves the use of agricultural machinery in all crop stages, from soil preparation to harvest, is currently one of the most relevant crops for agribusiness in Brazil. The purpose of this study was to investigate soil physical properties and root growth in a eutroferric red Oxisol (Latossolo Vermelho eutroférrico) after different periods under sugarcane. The study was carried out in a cane plantation in Rolândia, Paraná State, where treatments consisted of a number of cuts (1, 3, 8, 10 and 16), harvested as green and burned sugarcane, at which soil bulk density, macro and microporosity, penetration resistance, as well as root length, density and area were determined. Results showed that sugarcane management practices lead to alterations in soil penetration resistance, bulk density and porosity, compared to native forest soil. These alterations in soil physical characteristics impede the full growth of the sugarcane root system beneath 10 cm, in all growing seasons analyzed.
Resumo:
The Restinga vegetation consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. The climate along the coast is tropical (Köppen). Of all ecosystems of the Atlantic Forest, Restinga is the most fragile and susceptible to anthropic disturbances. Plants respond to soil characteristics with physiological and morphological modifications, resulting in changes in the architecture (spatial configuration) of the root system. The purpose of this study was to characterize the soil fertility of high and low restinga forests, by chemical and physical parameters, and its relation to the root system distribution in the soil profile. Four locations were studied: (1) Ilha Anchieta State Park, Ubatuba; (2) two Ecological Stations of Jureia-Itatins and of Chauás, in the municipality of Iguape; (3) Vila de Pedrinhas in the municipality of Ilha Comprida; and (4) Ilha do Cardoso State Park, Cananeia. The soil fertility (chemical and physical properties) was analyzed in the layers 0-5, 0-10, 0-20, 20-40 and 40-60 cm. In addition, the distribution of the root system in the soil profile was evaluated, using digital images and the Spring program. It was concluded that the root system of all vegetation types studied is restricted to the surface layers, 0-10 and 10-20 cm, but occupies mainly the 0-10 cm layer (70 %); that soil fertility is low in all environments studied, with base saturation values below 16 %, since most exchange sites are occupied by aluminum; and that restinga vegetation is edaphic.
Resumo:
The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.
Resumo:
The S-index was introduced in 2004 in a publication by A.R. Dexter. S was proposed as an indicator of soil physical quality. A critical value delimiting soils with rich and poor physical quality was proposed. At present, Brazil is world leader in citations of Dexter's publication. In this publication the S-theory is mathematically revisited and extended. It is shown that S is mathematically correlated to bulk density and total porosity. As an absolute indicator, the value of S alone has proven to be incapable of predicting soil physical quality. The critical value does not always hold under boundary conditions described in the literature. This is to be expected because S is a static parameter, therefore implicitly unable to describe dynamic processes. As a relative indicator of soil physical quality, the S-index has no additional value over bulk density or total porosity. Therefore, in the opinion of the author, the fact that bulk density or total porosity are much more easily determined than the water retention curve for obtaining S disqualifies S as an advantageous indicator of relative soil physical quality. Among the several equations available for the fitting of water retention curves, the Groenevelt-Grant equation is preferable for use with S since one of its parameters and S are linearly correlated. Since efforts in soil physics research have the purpose of describing dynamic processes, it is the author's opinion that these efforts should shift towards mechanistic soil physics as opposed to the search for empirical correlations like S which, at present, represents far more than its reasonable share of soil physics in Brazil.
Resumo:
The cultivation of sugarcane with intensive use of machinery, especially for harvest, induces soil compaction, affecting the crop development. The control of agricultural traffic is an alternative of management in the sector, with a view to preserve the soil physical quality, resulting in increased sugarcane root growth, productivity and technological quality. The objective of this study was to evaluate the physical quality of an Oxisol with and without control traffic and the resulting effects on sugarcane root development, productivity and technological quality. The following managements were tested: no traffic control (NTC), traffic control consisting of an adjustment of the track width of the tractor and sugarcane trailer (TC1) and traffic control consisting of an adjustment of the track width of the tractor and trailer and use of an autopilot (TC2). Soil samples were collected (layers 0.00-0.10; 0.10-0.20 and 0.20-0.30 m) in the plant rows, inter-row center and seedbed region, 0.30 m away from the plant row. The productivity was measured with a specific weighing scale. The technological variables of sugarcane were measured in each plot. Soil cores were collected to analyze the root system. In TC2, the soil bulk density and compaction degree were lowest and total porosity and macroporosity highest in the plant row. Soil penetration resistance in the plant row, was less than 2 MPa in TC1 and TC2. Soil aggregation and total organic carbon did not differ between the management systems. The root surface and volume were increased in TC1 and TC2, with higher productivity and sugar yield than under NTC. The sugarcane variables did not differ between the managements. The soil physical quality in the plant row was preserved under management TC1 and TC2, with an improved root development and increases of 18.72 and 20.29 % in productivity and sugar yield, respectively.
Resumo:
Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.
Resumo:
After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.
Resumo:
Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.
Resumo:
ABSTRACT The concept of soil physical quality (SPQ) is currently under discussion, and an agreement about which soil physical properties should be included in the SPQ characterization has not been reached. The objectives of this study were to evaluate the ability of SPQ indicators based on static and dynamic soil properties to assess the effects of two loosening treatments (chisel plowing to 0.20 m [ChT] and subsoiling to 0.35 m [DL]) on a soil under NT and to compare the performance of static- and dynamic-based SPQ indicators to define soil proper soil conditions for soybean yield. Soil sampling and field determinations were carried out after crop harvest. Soil water retention curve was determined using a tension table, and field infiltration was measured using a tension disc infiltrometer. Most dynamic SPQ indicators (field saturated hydraulic conductivity, K0, effective macroporosity, εma, total connectivity and macroporosity indexes [CwTP and Cwmac]) were affected by the studied treatments, and were greater for DL compared to NT and ChT (K0 values were 2.17, 2.55, and 4.37 cm h-1 for NT, ChT, and DL, respectively). However, static SPQ indicators (calculated from the water retention curve) were not capable of distinguishing effects among treatments. Crop yield was significantly lower for the DL treatment (NT: 2,400 kg ha-1; ChT: 2,358 kg ha-1; and DL: 2,105 kg ha1), in agreement with significantly higher values of the dynamic SPQ indicators, K0, εma, CwTP, and Cwmac, in this treatment. The results support the idea that SPQ indicators based on static properties are not capable of distinguishing tillage effects and predicting crop yield, whereas dynamic SPQ indicators are useful for distinguishing tillage effects and can explain differences in crop yield when used together with information on weather conditions. However, future studies, monitoring years with different weather conditions, would be useful for increasing knowledge on this topic.
Resumo:
The objective of this work was to investigate the relationship between changes in the plant community and changes in soil physical properties and water availability, during a succession from alfalfa (Medicago sativa L.) to natural vegetation on the Loess Plateau, China. Data from a succession sere spanning 32 years were collated, and vegetative indexes were compared to changes related to soil bulk density and soil water storage. The alfalfa yield increased for approximately 7 years, then it declined and the alfalfa was replaced by a natural community dominated by Stipa bungeana that began to thrive about 10 years after alfalfa seeding. Soil bulk density increased over time, but the deterioration of the alfalfa was mainly ascribed to a severe reduction in soil water storage, which was lowest around the time when degradation commenced. The results indicated that water consumption by alfalfa could be reduced by reducing plant density. The analysis of the data also suggested that soil water recharge could be facilitated by rotating the alfalfa with other crops, natural vegetation, or bare soil.