973 resultados para Single-domain Magnetite
Resumo:
Glycine Phosphite [NH3CH2COOH3PO3], abbreviated as GPI, undergoes a para-ferroelectric phase transition from the monoclinic symmetry P2(1)/a to P2(1) at 224.7 K. We report here a systematic study of the polarization switching process in this crystal. Growth of these crystals from aqueous solution has been undertaken employing both solvent evaporation and slow cooling methods. Hysteresis loop measurements along the polar b-axis yielded a spontaneous polarization value of 0.5 muC/cm(2) and a coercive field of 2.5 kV/cm. Conventional Merz technique was employed for polarization switching studies, wherein bipolar square pulses were applied to the sample to induce domain reversal. The transient switching pulse that flows through the sample on application of the field was recorded. The maximum switching time required for domain switching was measured both as a function of electric field and temperature. The experimentally observed switching curves were fitted with the model based on the Pulvari-Kuebler theory of nucleation and growth of domains. From the experimental data, the values of mobility and activation field were obtained. It was observed that switching process in this crystal is predominantly governed by the forward growth of domain walls in the high field region. However, switching process in GPI crystal was found to be slower than that found in other glycine based ferroelectric crystals.
Resumo:
Large single crystal of triglycine sulphate (dimension 100 mm along monoclinic b-axis and 15 mm in diameter) was grown using the unidirectional solution growth technique. The X-ray diffraction studies confirmed the growth/long axis to be b-axis (polar axis). The dielectric studies were carried out at various temperatures to establish the phase transition temperature. The frequency response of the dielectric constant, dielectric loss and impedance of the crystal along the growth axis, was monitored. These are typically characterized by strong resonance peaks in the kHz region. The piezoelectric coefficients like stiffness constant (C), elastic coefficient (S), electromechanical coupling coefficient (k) and d (31) were calculated using the resonance-antiresonance method. Polarization (P)-Electric field (E) hysteresis loops were recorded at various temperatures to find the temperature-dependent spontaneous polarization of the grown crystal. The pyroelectric coefficients were determined from the pyroelectric current measurement by the Byer and Roundy method. The ferroelectric domain patterns were recorded on (010) plane using scanning electron microscopy and optical microscopy.
Resumo:
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (m beta 1, m beta 1'beta 2, m beta 1-beta 5, m beta 1-beta 6 and m beta 4-beta 5) by transplanting beta 1, beta 1'beta 2, beta 1-beta 5, beta 1-beta 6 and beta 4-beta 5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, m beta 1'beta 2(ESWR) SSB was generated by mutating the MtuSSB specific `PRIY' sequence in the beta 2 strand of m beta 1'beta 2 SSB to EcoSSB specific `ESWR' sequence. Biochemical characterization revealed that except for m beta 1 SSB, all chimeras and a control construct lacking the C-terminal domain (Delta C SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, m beta 1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that m beta 1-beta 6, MtuSSB, m beta 1'beta 2 and m beta 1-beta 5 SSBs complemented E. coli Delta ssb in a dose dependent manner. Complementation by the m beta 1-beta 5 SSB was poor. In contrast, m beta 1'beta 2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
Resumo:
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we consider low-complexity turbo equalization for multiple-input multiple-output (MIMO) cyclic prefixed single carrier (CPSC) systems in MIMO inter-symbol interference (ISI) channels characterized by large delay spreads. A low-complexity graph based equalization is carried out in the frequency domain. Because of the reduction in correlation among the noise samples that happens for large frame sizes and delay spreads in frequency domain processing, improved performance compared to time domain processing is shown to be achieved. This improved performance is attractive for equalization in severely delay spread ISI channels like ultrawideband channels and underwater acoustic channels.
Resumo:
Micro- and nano-mechanical resonators have been proposed for a variety of applications ranging from mass sensing to signal processing. Often their actuation and/or detection involve external subsystems that are much larger than the resonator itself. We have designed a simple microcantilever resonator with integrated sensor and actuator, facilitating the integration of large arrays of resonators. This unique design can be manufactured with a low-cost fabrication process, involving just a single step of lithography. The bilayer cantilever of gold and silicon dioxide is used as piezoresistive sensor as well as thermal bimorph actuator. The ac current used for actuation and the dc current used for piezoresistive detection are separated in the frequency-domain using a bias-tee circuit configuration. The resonant response is measured by detecting the second harmonic of the actuation current using a lock-in amplifier.
Resumo:
Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNA(Ile) which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively), in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i) the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8x10(2)).(4.33x10(2)) = 7.8x10(4), (ii) the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNA(Ile). The present study shows a non-michaelis type dependence of rate of reaction on tRNA(Ile) concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNA(Ile) whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.
Resumo:
Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn2+ ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.
Resumo:
With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naive Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (approximate to 85%) and specific (approximate to 95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. Proteins 2014; 82:1219-1234. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation. (C) 2014 AIP Publishing LLC.
Resumo:
In this work, we have explored the prospect of segmenting crowd flow in H. 264 compressed videos by merely using motion vectors. The motion vectors are extracted by partially decoding the corresponding video sequence in the H. 264 compressed domain. The region of interest ie., crowd flow region is extracted and the motion vectors that spans the region of interest is preprocessed and a collective representation of the motion vectors for the entire video is obtained. The obtained motion vectors for the corresponding video is then clustered by using EM algorithm. Finally, the clusters which converges to a single flow are merged together based on the bhattacharya distance measure between the histogram of the of the orientation of the motion vectors at the boundaries of the clusters. We had implemented our proposed approach on the complex crowd flow dataset provided by 1] and compared our results by using Jaccard measure. Since we are performing crowd flow segmentation in the compressed domain using only motion vectors, our proposed approach performs much faster compared to other pixel domain counterparts still retaining better accuracy.
Resumo:
Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface alpha 5 beta 1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 x 10(8)) and Tomlinson J (Library size 1.37 x 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.
Resumo:
Helicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H.pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity. Here, we analyze the role of the nuclease activity of MutS2, a protein that limits recombination during transformation in H.pylori. In previously studied MutS2 proteins, the C-terminal Smr domain was mapped as the region responsible for its nuclease activity. We report here that deletion of Smr domain does not completely abolish the nuclease activity of HpMutS2. Using bioinformatics analysis and mutagenesis, we identified an additional and novel nuclease motif (LDLK) at the N-terminus of HpMutS2 unique to Helicobacter and related epsilon-proteobacterial species. A single point mutation (D30A) in the LDLK motif and the deletion of Smr domain resulted in approximate to 5-10-fold loss of DNA cleavage ability of HpMutS2. Interestingly, the mutant forms of HpMutS2 wherein the LDLK motif was mutated or the Smr domain was deleted were unable to complement the hyper-recombination phenotype of a mutS2(-) strain, suggesting that both nuclease sites are indispensable for an efficient anti-recombinase activity of HpMutS2.
Resumo:
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.
Resumo:
We have used scanning gate microscopy to explore the local conductivity of a current-annealed graphene flake. A map of the local neutrality point (NP) after annealing at low current density exhibits micron-sized inhomogeneities. Broadening of the local e-h transition is also correlated with the inhomogeneity of the NP. Annealing at higher current density reduces the NP inhomogeneity, but we still observe some asymmetry in the e-h conduction. We attribute this to a hole-doped domain close to one of the metal contacts combined with underlying striations in the local NP. © 2010 American Institute of Physics.