1000 resultados para Simulation informatique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible fixation or the so-called ‘biological fixation’ has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone–plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (.3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Foot ulcers are a common reason for diabetes-related hospitalisation. Foot ulcer simulation training (FUST) programs have increased podiatry participants self-confidence to manage foot ulcers. However, supervisors’ perspectives on their participants attending these simulation programs have not been investigated. This mixed method (quantitative and qualitative) study aimed to investigate home clinical supervisors’ perspectives on any changes to their participants’ competence and practice following FUST. Methods Clinical supervisors of fifteen podiatrists, who participated in a two-day Foot Ulcer Simulation Training (FUST) course, were recruited. Supervisors completed quantitative surveys evaluating their participants’ foot ulcer competence pre-FUST and 6-months post-FUST, via a purposed designed 21-item survey using a five-point Likert scale (1=Very limited, 5=Highly competent). Supervisors also attended a semi-structured qualitative group interview to investigate supervisors’ perspectives on FUST. Results Supervisors surveys returned were pre-FUST (n=10) and post-FUST (n=12). Significant competence improvements were observed at the 6-month survey (mean scores 2.84 cf. 3.72, p < 0.05). Five supervisors attended the group interview. Five sub-themes emerged: i) FUST provided a good foundation for future learning, ii) FUST modelled good clinical behaviour, iii) clinical practice improvement was evident in most participants, iv) clinical improvements were dependent on participant’s willingness to change and existing workplace culture, v) FUST needs to be reinforced back in the home clinic. Conclusion Overall, supervisors of FUST participants indicated that the course improved their participants’ competence and clinical practice. However, the degree of improvement appears dependant on the participants’ home workplace culture and willingness to embrace change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Foot ulcers are a leading cause of diabetes-related hospitalisations. Clinical training has been shown to be beneficial in foot ulcer management. Recently, improved self-confidence in podiatrists was reported immediately after foot ulcer simulation training (FUST) pilot programs. This study aimed to investigate the longer-term impacts of the FUST program on podiatrists’ self-confidence over 12 months in a larger sample. Methods Participants were podiatrists attending a two-day FUST course comprising web-based interactive learning, low-fidelity part-tasks and high-fidelity full clinical scenarios. Primary outcome measures included participants’ self-confidence measured pre-, (immediately) post-, 6-month post- and 12-month post-course via a purpose designed 21-item survey using a five-point Likert scale (1=Very limited, 5=Highly confident). Participants’ perceptions of knowledge gained, satisfaction, relevance and fidelity were also investigated. ANOVA and post hoc tests were used to test any differences between groups. Results Thirty-four participants completed FUST. Survey response rates were 100% (pre), 82% (post), 74% (6-month post), and 47% (12-month post). Overall mean scores were 3.13 (pre), 4.49 (post), 4.35 (6-month post) and 4.30 (12-month post) (p < 0.05); post hoc tests indicated no differences between the immediately, 6-month and 12-month post group scores (p > 0.05). Satisfaction, knowledge, relevance and fidelity were all rated highly. Conclusion This study suggests that significant short-term improvements in self-confidence to manage foot ulcers via simulation training are retained over the longer term. It is likely that improved self-confidence leads to improved foot ulcer clinical practice and outcomes; although this requires further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene–polymer nanocomposites have promising properties as new structural and functional materials. The remarkable mechanical property enhancement in these nanocomposites is generally attributed to exceptional mechanical property of graphene and possible load transfer between graphene and polymer matrix. However, the underlying strengthening and toughening mechanisms have not been well understood. In this work, the interfacial behavior of graphene-polyethylene (PE) was investigated using molecular dynamics (MD) method. The interfacial shear force (ISF) and interfacial shear stress (ISS) between graphene and PE matrix were evaluated, taking into account graphene size, the number of graphene layers and the structural defects in graphene. MD results show that the ISS at graphene-PE interface mainly distributes at each end of the graphene nanofiller within the range of 1 nm, and much larger than that at carbon nanotube (CNT)-PE interface. Moreover, it was found that the ISS at graphene-PE interface is sensitive to the layer number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an accurate and robust geometric and material nonlinear formulation to predict structural behaviour of unprotected steel members at elevated temperatures. A fire analysis including large displacement effects for frame structures is presented. This finite element formulation of beam-column elements is based on the plastic hinge approach to model the elasto-plastic strain-hardening material behaviour. The Newton-Raphson method allowing for the thermal-time dependent effect was employed for the solution of the non-linear governing equations for large deflection in thermal history. A combined incremental and total formulation for determining member resistance is employed in this nonlinear solution procedure for the efficient modeling of nonlinear effects. Degradation of material strength with increasing temperature is simulated by a set of temperature-stress-strain curves according to both ECCS and BS5950 Part 8, which implicitly allows for creep deformation. The effects of uniform or non-uniform temperature distribution over the section of the structural steel member are also considered. Several numerical and experimental verifications are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pile foundations transfer loads from superstructures to stronger sub soil. Their strength and stability can hence affect structural safety. This paper treats the response of reinforced concrete pile in saturated sand to a buried explosion. Fully coupled computer simulation techniques are used together with five different material models. Influence of reinforcement on pile response is investigated and important safety parameters of horizontal deformations and tensile stresses in the pile are evaluated. Results indicate that adequate longitudinal reinforcement and proper detailing of transverse reinforcement can reduce pile damage. Present findings can serve as a benchmark reference for future analysis and design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food waste is a current challenge that both developing and developed countries face. This project applied a novel combination of available methods in Mechanical, agricultural and food engineering to address these challenges. A systematic approach was devised to investigate possibilities of reducing food waste and increasing the efficiency of industry by applying engineering concepts and theories including experimental, mathematical and computational modelling methods. This study highlights the impact of comprehensive understanding of agricultural and food material response to the mechanical operations and its direct relation to the volume of food wasted globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

User evaluations using paper prototypes commonly lack social context. The Group simulation technique described in this paper offers a solution to this problem. The study introduces an early-phase participatory design technique targeted for small groups. The proposed technique is used for evaluating an interface, which enables group work in photo collection creation. Three groups of four users, 12 in total, took part in a simulation session where they tested a low-fidelity design concept that included their own personal photo content from an event that their group attended together. The users’ own content was used to evoke natural experiences. Our results indicate that the technique helped users to naturally engage with the prototype in the session. The technique is suggested to be suitable for evaluating other early-phase concepts and to guide design solutions, especially with the concepts that include users’ personal content and enable content sharing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard Monte Carlo (sMC) simulation models have been widely used in AEC industry research to address system uncertainties. Although the benefits of probabilistic simulation analyses over deterministic methods are well documented, the sMC simulation technique is quite sensitive to the probability distributions of the input variables. This phenomenon becomes highly pronounced when the region of interest within the joint probability distribution (a function of the input variables) is small. In such cases, the standard Monte Carlo approach is often impractical from a computational standpoint. In this paper, a comparative analysis of standard Monte Carlo simulation to Markov Chain Monte Carlo with subset simulation (MCMC/ss) is presented. The MCMC/ss technique constitutes a more complex simulation method (relative to sMC), wherein a structured sampling algorithm is employed in place of completely randomized sampling. Consequently, gains in computational efficiency can be made. The two simulation methods are compared via theoretical case studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the X-series impulse facilities at The University of Queensland and show that they can produce useful high speed flows of relevance to the study of high temperature radiating flow flields characteristic of atmospheric entry. Two modes of operation are discussed: (a) the expansion tube mode which is useful for subscale aerodynamic testing of vehicles and (b) the non-reflected shock tube mode which can be used to emulate the nonequilibrium radiating region immediately following the bow shock of a flight vehicle.