974 resultados para Simulated annealing algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compare a broad range of optimal product line design methods. The comparisons take advantage of recent advances that make it possible to identify the optimal solution to problems that are too large for complete enumeration. Several of the methods perform surprisingly well, including Simulated Annealing, Product-Swapping and Genetic Algorithms. The Product-Swapping heuristic is remarkable for its simplicity. The performance of this heuristic suggests that the optimal product line design problem may be far easier to solve in practice than indicated by complexity theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can therefore be achieved by distributing individual DASH runs over a network of computers. The GDASH program achieves this by packaging DASH in a form that enables it to run under the Univa UD Grid MP system, which harnesses networks of existing computing resources to perform calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simulated annealing approach to structure solution from powder diffraction data, as implemented in the DASH program, is easily amenable to parallelization at the individual run level. Modest increases in speed of execution can therefore be achieved by executing individual DASH runs on the individual cores of CPUs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Matheron's usual variogram estimator can result in unreliable variograms when data are strongly asymmetric or skewed. Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. This paper examines the effects of underlying asymmetry on the variogram and on the accuracy of prediction, and the second one examines the effects arising from outliers. Standard geostatistical texts suggest ways of dealing with underlying asymmetry; however, this is based on informed intuition rather than detailed investigation. To determine whether the methods generally used to deal with underlying asymmetry are appropriate, the effects of different coefficients of skewness on the shape of the experimental variogram and on the model parameters were investigated. Simulated annealing was used to create normally distributed random fields of different size from variograms with different nugget:sill ratios. These data were then modified to give different degrees of asymmetry and the experimental variogram was computed in each case. The effects of standard data transformations on the form of the variogram were also investigated. Cross-validation was used to assess quantitatively the performance of the different variogram models for kriging. The results showed that the shape of the variogram was affected by the degree of asymmetry, and that the effect increased as the size of data set decreased. Transformations of the data were more effective in reducing the skewness coefficient in the larger sets of data. Cross-validation confirmed that variogram models from transformed data were more suitable for kriging than were those from the raw asymmetric data. The results of this study have implications for the 'standard best practice' in dealing with asymmetry in data for geostatistical analyses. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. The first paper of this series examined the effects of the former on the variogram and this paper examines the effects of asymmetry arising from outliers. Simulated annealing was used to create normally distributed random fields of different size that are realizations of known processes described by variograms with different nugget:sill ratios. These primary data sets were then contaminated with randomly located and spatially aggregated outliers from a secondary process to produce different degrees of asymmetry. Experimental variograms were computed from these data by Matheron's estimator and by three robust estimators. The effects of standard data transformations on the coefficient of skewness and on the variogram were also investigated. Cross-validation was used to assess the performance of models fitted to experimental variograms computed from a range of data contaminated by outliers for kriging. The results showed that where skewness was caused by outliers the variograms retained their general shape, but showed an increase in the nugget and sill variances and nugget:sill ratios. This effect was only slightly more for the smallest data set than for the two larger data sets and there was little difference between the results for the latter. Overall, the effect of size of data set was small for all analyses. The nugget:sill ratio showed a consistent decrease after transformation to both square roots and logarithms; the decrease was generally larger for the latter, however. Aggregated outliers had different effects on the variogram shape from those that were randomly located, and this also depended on whether they were aggregated near to the edge or the centre of the field. The results of cross-validation showed that the robust estimators and the removal of outliers were the most effective ways of dealing with outliers for variogram estimation and kriging. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simulated annealing approach to crystal structure determination from powder diffraction data, as implemented in the DASH program, is readily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can be achieved by distributing individual DASH runs over a network of computers. The CDASH program delivers this by using scalable on-demand computing clusters built on the Amazon Elastic Compute Cloud service. By way of example, a 360 vCPU cluster returned the crystal structure of racemic ornidazole (Z0 = 3, 30 degrees of freedom) ca 40 times faster than a typical modern quad-core desktop CPU. Whilst used here specifically for DASH, this approach is of general applicability to other packages that are amenable to coarse-grained parallelism strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in species composition is an important process in many ecosystems but rarely considered in systematic reserve site selection. To test the influence of temporal variability in species composition on the establishment of a reserve network, we compared network configurations based on species data of small mammals and frogs sampled during two consecutive years in a fragmented Atlantic Forest landscape (SE Brazil). Site selection with simulated annealing was carried out with the datasets of each single year and after merging the datasets of both years. Site selection resulted in remarkably divergent network configurations. Differences are reflected in both the identity of the selected fragments and in the amount of flexibility and irreplaceability in network configuration. Networks selected when data for both years were merged did not include all sites that were irreplaceable in one of the 2 years. Results of species number estimation revealed that significant changes in the composition of the species community occurred. Hence, temporal variability of community composition should be routinely tested and considered in systematic reserve site selection in dynamic systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solutions to combinatorial optimization, such as p-median problems of locating facilities, frequently rely on heuristics to minimize the objective function. The minimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. However, pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small branch of the literature suggests using statistical principles to estimate the minimum and use the estimate for either stopping or evaluating the quality of the solution. In this paper we use test-problems taken from Baesley's OR-library and apply Simulated Annealing on these p-median problems. We do this for the purpose of comparing suggested methods of minimum estimation and, eventually, provide a recommendation for practioners. An illustration ends the paper being a problem of locating some 70 distribution centers of the Swedish Post in a region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solutions to combinatorial optimization problems frequently rely on heuristics to minimize an objective function. The optimum is sought iteratively and pre-setting the number of iterations dominates in operations research applications, which implies that the quality of the solution cannot be ascertained. Deterministic bounds offer a mean of ascertaining the quality, but such bounds are available for only a limited number of heuristics and the length of the interval may be difficult to control in an application. A small, almost dormant, branch of the literature suggests using statistical principles to derive statistical bounds for the optimum. We discuss alternative approaches to derive statistical bounds. We also assess their performance by testing them on 40 test p-median problems on facility location, taken from Beasley’s OR-library, for which the optimum is known. We consider three popular heuristics for solving such location problems; simulated annealing, vertex substitution, and Lagrangian relaxation where only the last offers deterministic bounds. Moreover, we illustrate statistical bounds in the location of 71 regional delivery points of the Swedish Post. We find statistical bounds reliable and much more efficient than deterministic bounds provided that the heuristic solutions are sampled close to the optimum. Statistical bounds are also found computationally affordable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The p-medianmodel is commonly used to find optimal locations of facilities for geographically distributed demands. So far, there are few studies that have considered the importance of the road network in the model. However, Han, Håkansson, and Rebreyend (2013) examined the solutions of the p-median model with densities of the road network varying from 500 to 70,000 nodes. They found as the density went beyond some 10,000 nodes, solutions have no further improvements but gradually worsen. The aim of this study is to check their findings by using an alternative heuristic being vertex substitution, as a complement to their using simulated annealing. We reject the findings in Han et al (2013). The solutions do not further improve as the nodes exceed 10,000, but neither do the solutions deteriorate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.