1000 resultados para Silane plasma
Resumo:
This contribution sheds light on the role of crystal size and phase composition in inducing biomimetic apatite growth on the surface of nanostructured titania films synthesized by reactive magnetron sputtering of Ti targets in Ar+O2 plasmas. Unlike most existing techniques, this method enables one to deposit highly crystalline titania films with a wide range of phase composition and nanocrystal size, without any substrate heating or postannealing. Moreover, by using this dry plasma-based method one can avoid surface hydroxylation at the deposition stage, almost inevitable in wet chemical processes. Results of this work show that high phase purity and optimum crystal size appear to be the essential requirement for efficient apatite formation on magnetron plasma-fabricated bioactive titania coatings. © 2006 Wiley Periodicals, Inc.
Resumo:
This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.
Resumo:
Unique features and benefits of the plasma-aided nanofabrication are considered by using the "plasma-building block" approach, which is based on plasma diagnostics and nanofilm characterization, cross-referenced by numerical simulation of generation and dynamics of building blocks in the gas phase, their interaction with nanostructured surfaces, and ab initio simulation of chemical structure of relevant nanoassemblies. The examples include carbon nanotip microemitter structures, semiconductor quantum dots and nanowires synthesized in the integrated plasma-aided nanofabrication facility.
Resumo:
This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.
Resumo:
Nanoparticle manipulation by various plasma forces in near-substrate areas of the Integrated Plasma-Aided Nanofabrication Facility (IPANF) is investigated. In the IPANF, high-density plasmas of low-temperature rf glow discharges are sustained. The model near-substrate area includes a variable-length pre-sheath, where a negatively charged nanoparticle is accelerated, and a self-consistent collisionless sheath with a repulsive electrostatic potential. Conditions enabling the nanoparticle to overcome the repulsive barrier and deposit onto the substrate are investigated numerically and experimentally. Under certain conditions the momentum gained by the nanoparticle in the pre-sheath area appears to be sufficient for the driving ion drag force to outbalance the repulsive electrostatic and thermophoretic forces. Numerical results are applied for the explanation of size-selective nanoparticle deposition in the Ar+H2+CH4 plasma-assisted chemical vapor deposition of various carbon nanostructure patterns for electron field emitters and are cross-referenced by the field emission scanning electron microscopy. It is shown that the nanoparticles can be efficiently manipulated by the temperature gradient-controlled thermophoretic force. Experimentally, the temperature gradients in the near-substrate areas are measured in situ by means of the temperature gradient probe and related to the nanofilm fabrication conditions. The results are relevant to plasma-assisted synthesis of numerous nanofilms employing structural incorporation of the plasma-grown nanoparticles, including but not limited to nanofabrication of ordered single-crystalline carbon nanotip arrays for electron field emission applications.
Resumo:
The effect of the nonuniformity of the electron density on the dispersion properties of surface waves propagating in a direction transverse to an external magnetic field is studied for the model of a two-layer plasma structure bounded by a metal. It is shown that the spectra of the waves can be effectively controlled by varying the degree of nonuniformity of the density and the dimensions of the layers.
Resumo:
We investigate nonlinear self-interacting magnetoplasma surface waves (SW) propagating perpendicular to an external magnetic field at a plasma-metal boundary. We obtain the nonlinear dispersion equation and nonlinear Schroedinger equation for the envelope field of the SW. The solution to this equation is studied with regard to stability relative to longitudinal and transverse perturbations.
Resumo:
The self-modulation process of a high-frequency surface wave (SW) in a wave-guiding structure - a semibounded magnetoactive plasma and perfectly conducting metal wall - is considered for the weak nonlinearity approximation. Estimates are given for the contributions to the nonlinear frequency shift of the SW from the two principal self-action channels: via the generation of a signal of the doubled frequency and of static surface perturbations, arising as the result of the action of a ponderomotive force. Solutions for the field envelope of the nonlinear wave are examined with regard to their stability with respect to longitudinal and transverse perturbations.
Resumo:
The control of the generation and assembly of the electronegative plasma-grown particles is discussed. Due to the large number of elementary processes of particle creation and loss, electronegative complex plasmas should be treated as open systems where the stationary states are sustained by various particle creation and loss processes in the plasma bulk, on the walls, and on the dust grain surfaces. To be physically self-consistent, ionization, diffusion, electron attachment, recombination, dust charge variation, and dissipation due to electron and ion elastic collisions with neutrals and fine particles, as well as charging collisions with the dust, must be accounted for.
Resumo:
Hydroxyapatite (HA) coatings have numerous applications in orthopedics and dentistry, owing to their excellent ability to promote stronger implant fixation and faster bone tissue ingrowth and remodeling. Thermal plasma spray and other plasma-assisted techniques have recently been used to synthesize various calcium phosphate-based bioceramics. Despite notable recent achievements in the desired stoichiometry, phase composition, mechanical, structural, and bio-compatible properties, it is rather difficult to combine all of the above features in a single coating. For example, many existing plasma-sprayed HA coatings fall short in meeting the requirements of grain size and crystallinity, and as such are subject to enhanced resorption in body fluid. On the other hand, relatively poor interfacial bonding and stability is an obstacle to the application of the HA coatings in high load bearing Ti6Al4V knee joint implants. Here, we report on an alternative: a plasma-assisted, concurrent, sputtering deposition technique for high performance biocompatible HA coatings on Ti6Al4V implant alloy. The plasma-assisted RF magnetron co-sputtering deposition method allows one to simultaneously achieve most of the desired attributes of the biomimetic material and overcome the aforementioned problems. This article details the film synthesis process specifications, extensive analytical characterization of the material's properties, mechanical testing, simulated body fluid assessments, biocompatibility and cytocompatibility of the HA-coated Ti6Al4V orthopedic alloy. The means of optimization of the plasma and deposition process parameters to achieve the desired attributes and performance of the HA coating, as well as future challenges in clinical applications are also discussed.
Resumo:
Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.
Resumo:
This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.
Resumo:
Negative ions and negatively charged micro- to nano-meter sized dust grains are ubiquitous in astrophysical as well as industrial processing plasmas. The negative ions can appear in electro-negative plasmas as a result of elementary processes such as dissociative or non-dissociative electron attachment to neutrals. They are usually rather small in number, and in general do not affect the overall plasma behavior. On the other hand, since the dust grains are almost always highly negative, even in small numbers they can take up a considerable proportion of the total negative charge in the system. The presence of dusts can affect the characteristics of most collective processes of the plasma since the charge balance in both the steady and dynamic states can be significantly altered. Another situation that often occurs is that the electron number density becomes small because of their absorption by the dust grains or the discharge walls. In this case the negative ions in the plasma can play a very important role. Here, a self-consistent theory of linear waves in complex laboratory plasmas containing dust grains and negative ions is presented. A comprehensive model for such plasmas including source and sink effects associated with the presence of dust grains and negative ions is introduced. The stationary state of the plasma as well as the dispersion and damping characteristics of the waves are investigated. All relevant processes, such as ionization, diffusion, electron attachment, negative-positive ion recombination, dust charge relaxation, and dissipation due to electron and ion elastic collisions with neutrals and dust particles, as well as charging collisions with the dusts, are taken into consideration.
Resumo:
Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.
Resumo:
A complex low-pressure argon discharge plasma containing dust grains is studied using a Boltzmann equation for the electrons and fluid equations for the ions. Local effects, such as the spatial distribution of the dust density and external electric field, are included, and their effect on the electron energy distribution, the electron and ion number densities, the electron temperature, and the dust charge are investigated. It is found that dust particles can strongly affect the plasma parameters by modifying the electron energy distribution, the electron temperature, the creation and loss of plasma particles, as well as the spatial distributions of the electrons and ions. In particular, for sufficiently high grain density and/or size, in a low-pressure argon glow discharge, the Druyvesteyn-like electron distribution in pristine plasmas can become nearly Maxwellian. Electron collection by the dust grains is the main cause for the change in the electron distribution function.