320 resultados para Shaft
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.
Resumo:
Human evolution has always been linked to personal or group needs. This statement is based on observations of the day to day. With time, we can now choose from among many excellent techniques and materials that can be employed in the construction of this part of the machinery so important to the functionality of machines and equipment. When we look at a machine, we see that this is usually designed by combining a set of pre-determined in your project. Among the many pieces that we can highlight one of them is of fundamental importance, the gear. Gears are an example of the mechanical devices used by the older man, and are currently the most important components in the transmission technique. This is responsible for transmitting rotary motion from one shaft to another. Gears are one of the best among the various means available for the transmission of motion. Gears are the most important components of modern technique of transmission. The main purpose of a transmission gear is precisely transmit torque and speed. The requirements have increased significantly due to pollution and energy conservation. Nowadays, gear transmissions are required to transmit high strength through all his life together with the high demand on performance and sound properties. An optimal design for the gear you need a set of the most modern fabrication machines and cutting tools. In the following work is studied on the manufacture of gears, making the monitoring of a case study of the try out the installation of a gear grinding machine
Resumo:
This undergraduate thesis evaluates the effects of temperature variation of the air inside the CVT gearbox on the performance of a Continuously Variable Transmission (CVT). The CVT used in the tests was manufactured by Gaged Engineering (GX9 model) and is currently used in a Baja prototype. It’s a mechanically operated CVT, which the movement of the pulley plates varies according to the drive shaft rotation, shifting the belt along the diameter, and varying the transmission ratio. The purpose of this work is to analyze the change in the slip factor, coefficient that compares the variation between the actual transmission ratio and the ratio of geometric transmission, and its correlation with the power variation. A test bench was built and some tests were performed, indicating that was possible to achieve output power ratios of 1.75 [ℎ
Resumo:
This work presents a study that aims to validate the fatigue analyses developed on finite element commercial software, ANSYS Workbench. It was based on mechanical tests development of traction and hardness, to verify the mechanical properties of material that the shaft was manufactured (ABNT 1045 steel), it was developed bend test, with purpose to prove the confiability degree of computational analyses, obtaining the maximum stress in a work condition determined with 40 [kgf] of load applied, and at the end, was developed the fatigue test to obtain the number of cycles that the transmission shaft can support in a work condition with 8 [kgf] of load applied. The results obtained during the work present, have to be quite satisfactory with the theoretically expected
Resumo:
This work aims to determine the first natural frequency of rotation shaft by using a basic software, Excel, and to compare it to the values obtained in laboratory. When an axle is submitted to a rotation, depending on the rotational frequency used, the axle can enter a state of resonance, in which the amplitude of vibration becomes rather high. The frequencies in which the resonance is observed depends on several parameters of the axle, including the number of concentrated masses associated to the axle. Thus, to obtain a computer program of easy use and access, which can preview the frequency of resonance of an axle in rotation with ‘n’ numbers of concentrated masses it has been studied how the frequency varies with each of these parameters. The computer program and the analyses have been made using the Rayleigh Method, which allowed the transformation of a continuous system to discrete through the theory of finite elements, which has proved that, the bigger the number of divisions of the shaft taken into consideration in the calculus of the natural frequency, the more this value gets close to the real value. The results obtained have been considered satisfactory once these have gotten close to the theoretical results expected
Resumo:
The teaching and learning of mathematics through alternative methods make Mathematics more enjoyable, accessible and meaningful. Through teaching resource storytelling the student becomes the protagonist of the construction of their knowledge. With the use of books and writings of Malba Tahan is possible to work with mathematics, as a curriculum component, fostering the development of skills and Mathematics skills in students. Thus, this study aims to understand which skills and Mathematics skills can be developed with the storytelling of The Case of the Four Fours in Basic Education. Through the telling of this story, students develop the skills related to the block / shaft Numbers and Operations, present in official documents, and other skills and mathematics skills
Resumo:
This paper discusses the influence of the design parameters in the operation and construction of an internal combustion engine. A theoretical analysis was developed using a standard crank-connecting rod-piston to verify the behavior of the stresses generated in the combustion and transformed into rotational energy of the crank shaft. Design parameters directly influence not only the final result of the characteristics of power and torque, but how the engine must be built to withstand different loads. The choice of parameters of a combustion engine is directly linked with the application of the engine and the final result expected of it function
Resumo:
Disposição construtiva aplicada em cadeira antropométrica. Patente de modelo de utilidade para uma cadeira antropométrica constituída de uma estrutura (1) que sustenta uma pluralidade de instrumentos de medição, sendo que a parte posterior da cadeira é provida de dois instrumentos de medição compostos por duas hastes, sendo uma delas para medida da altura tronco-encefálica (2) e a outra para a medida do assento até a região renal (4), de modo que cada uma dessas hastes possui uma escala numérica, sendo ora interna (3), ora externa (5). O assento (6) da cadeira (1) é composto por um anteparo com uma canaleta interna e dois cursores laterais deslizantes para a direita e para a esquerda, que possuem escala numérica.; O assento é provido de referências métricas sendo uma no sentido da largura do assento (8) e outra no sentido da profundidade do assento (9), sendo a escala (8) dividida em duas escalas, onde o ponto zero é exatamente o meio do assento. O assento (6) também possui acoplada uma haste frontal, com deslizamento no sentido antero-posterior (10), a qual contém uma escala interna embutida na peça, de modo que a soma entre a medida da profundidade do assento com a medida obtida pela haste deslizante horizontal (10) totalizam a medida sacro-poplítea. Para a tomada da medida da altura poplítea, há uma outra haste (11), integrada à superfície anterior da cadeira, cujo deslizamento é vertical, sendo que essa haste (11) possui uma escala numérica interna uma externa (12).; A base da cadeira (13) possui um dispositivo de acionamento lateral com o pé (16), que é conectado ao assento (6) por meio de um macaco hidráulico, permitindo a elevação do assento, sendo que a outra alavanca (17), ao ser girada, realiza a descida do assento (6).
Resumo:
ObjectiveThis study aimed to evaluate the benefit and specifically the feasibility of using ultrasound in ophthalmologic periconal block, and the occurrence of complications.Study designProspective experimental study.AnimalsTen healthy New Zealand White rabbits (6-8months of age), weighing 2.0-3.5kg.MethodsRabbits were anesthetized by intramuscular injection of acepromazine (1mgkg(-1)), ketamine (30mgkg(-1)) and xylazine (3mgkg(-1)). Ultrasound-assisted periconal block with lidocaine was performed on 18 eyes. Intraocular pressure was measured by applanation tonometry whereas corneal sensitivity was assessed using an esthesiometer, before and after each periconal anesthesia.ResultsIn all 18 eyes, it was possible to adequately visualize the needle shaft within the periconal space, as well as muscular cone, optic nerve and local anesthetic solution spread. Lidocaine 2% without epinephrine (0.790.19mL) was injected into the periconal space. There was no statistical difference between the intraocular pressure (meanSD) measured before (10.9 +/- 2.9mmHg) and after (11.9 +/- 3.8mmHg) the periconal anesthesia (p=0.38). The effectiveness of the ultrasound-assisted technique was shown according to the values for corneal sensitivity, assessed before and after periconal anesthesia (p<0.0001). Complications were not observed in this study.ConclusionsEye ultrasonography allowed visualization of all anatomic structures necessary to perform a periconal block, as well as the needle insertion and anesthetic spread in real time. Further studies are required to prove the real potential of ultrasound for reducing the incidence of complications associated with ophthalmic blocks, especially when anatomic disorders of the eye could potentially increase the risk.Clinical relevanceUltrasonography is a painless, noninvasive tool that may improve safety of ophthalmic regional blocks, potentially by reducing the prevalence of globe perforation or penetration of the optic nerve associated with the needle-based techniques.
Resumo:
Soil compaction is one of the limiting factors in areas subjected to direct seeding. The method used to break up the compacted layer should disturb the soil as little as possible, as well as maintain the ground cover. The aim of this study was to evaluate the influence of subsoiling, scarification and use of shaft-type furrowing mechanisms when sowing, on preserving the ground cover, water content and soil density, as well as the effects on maize yield in a dystroferic Red Nitosol, cultivated under a system of direct seeding for ten years. The experimental design was of randomised blocks, with eight soil management treatments: subsoiling to a depth of 0.40 m before sowing the winter crop, subsoiling to 0.40 m before sowing the maize, scarification to 0.30 m before the winter crop, scarification to 0.30 m before the maize, scarification to 0.20 m before the winter crop, scarification to 0.20 m before the maize, direct seeding of the maize with a shaft-type furrowing mechanism and direct seeding of the maize using a double disc furrower. There were four replications. Subsoiling and scarification influenced the preservation of the ground cover, soil density and water content immediately after sowing, but did not interfere in plant development or grain yield in the maize crop. The use of shaft-type furrowing mechanisms in the sowing operation had no effect on any of the parameters under study.
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical and complex modal analysis. The mathematical modeling was based on the theory of Euler-Bernoulli beam. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using Matlab ®, and numerical simulations were performed to validate this model.