998 resultados para Settleable solids reduction
Resumo:
Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.
Resumo:
Three anaerobic ponds used to store and treat piggery wastes were fully covered with permeable materials manufactured from polypropylene geofabric, polyethylene shade cloth and supported straw. The covers were assessed in terms of efficacy in reducing odour emission rates over a 40-month period. Odour samples were collected from the surface of the covers, the surface of the exposed liquor and from the surface of an uncovered (control) pond at one of the piggeries. Relative to the emission rate of the exposed liquor at each pond, the polypropylene, shade cloth and straw covers reduced average emission rates by 76%, 69% and 66%, respectively. At the piggery with an uncovered control pond, the polypropylene covers reduced average odour emission rates by 50% and 41%, respectively. A plausible hypothesis, consistent with likely mechanisms for the odour reduction and the olfactometric method used to quantifying the efficacy of the covers, is offered.
Resumo:
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe-type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode,indicating the possibility that corona-generated species play a crucial role in desorption.
Resumo:
A variety of materials were trialed as supported permeable covers using a series of laboratory-scale anaerobic digesters. Efficacy of cover performance was assessed in terms of impact on odour and greenhouse gas emission rate, and the characteristics of anaerobic liquor. Data were collected over a 12-month period. Initially the covers reduced the rate of odour emission 40-100 times relative to uncovered digesters. After about three months, this decreased to about a threefold reduction in odour emission rate, which was maintained over the remainder of the trial. The covers did not alter methane emission rates. Carbon dioxide emission rates varied according to cover type. Performance of the covers was attributed to the physical characteristics of the cover materials and changes in liquor composition. The reductions in odour emission indicate that these covers offer a cost-effective method for odour control.
Resumo:
The efficacy of supported covers was investigated under field conditions using a series of prototypes deployed on an anaerobic pond treating typical piggery waste. Research focused on identifying effective cover support materials and deployment methods, quantifying odour reduction, and estimating the life expectancy of various permeable cover materials. Over a 10-month period, median odour emission rates were five to eight times lower from supported straw cover surfaces and a non-woven, spun fibre polypropylene weed control material than from the adjacent uncovered pond surface. While the straw covers visually appeared to degrade very rapidly, they continued to reduce odour emissions effectively. The polypropylene cover appeared to offer advantages from the perspectives of cost, reduced maintenance and ease of manufacture.
Resumo:
Enhancement of the photoacoustic signal from condensed materials by several folds is achieved by the introduction of a liquid with high vapor pressure in the photoacoustic cell. The enhancement is especially marked for low absorption coefficients and high chopping frequencies. Typically the enhancement is two to nine times in the presence of diethyl ether at 293 K. A linear relationship is observed between the enhancement and the vapor pressure of the liquid.
Resumo:
A rapid quenching technique with a quenching rate of roughly 106°C/sec has been developed to prepare glassy samples of ABO3 type materials. Glasses of potassium lithium niobate have been prepared by this technique. These glasses have been characterized by x-ray diffraction, electron diffraction and differential scanning calorimetry techniques to assess the quality of the obtained glasses.
Resumo:
An experiment using herds of similar to 20 cows (farmlets) assessed the effects of high stocking rates on production and profitability of feeding systems based on dryland and irrigated perennial ryegrass-based pastures in a Mediterranean environment in South Australia over 4 years. A target level of milk production of 7000 L/cow.year was set, based on predicted intakes of 2.7 t DM/cow.year as concentrates, pasture intakes from 1.5 to 2.7 t/cow.year and purchased fodder. In years 1 and 2, up to 1.5 t DM/cow.year of purchased fodder was used and in years 3 and 4 the amounts were increased if necessary to enable levels of milk production per cow to be maintained at target levels. Cows in dryland farmlets calved in March to May inclusive and were stocked at 2.5, 2.9, 3.3, 3.6 and 4.1 cows/ha, while those in irrigated farmlets calved in August to October inclusive and were stocked at 4.1, 5.2, 6.3 and 7.4 cows/ha. In the first 2 years, when inputs of purchased fodder were limited, milk production per cow was reduced with higher stocking rates (P < 0.01), but in years 3 and 4 there were no differences. Mean production was 7149 kg/cow.year in years 1 and 2, and 8162 kg/cow.year in years 3 and 4. Production per hectare was very closely related to stocking rate in all years (P < 0.01), increasing from 18 to 34 t milk/ha.year for dryland farmlets (1300 to 2200 kg milk solids/ha) and from 30 to 60 t milk/ha.year for irrigated farmlets (2200 to 4100 kg milk solids/ha). Almost all of these increases were attributed to the increases in grain and purchased fodder inputs associated with the increases in stocking rate. Net pasture accumulation rates and pasture harvest were generally not altered with stocking rate, though as stocking rate increased there was a change to more of the pasture being grazed and less conserved in both dryland and irrigated farmlets. Total pasture harvest averaged similar to 8 and 14 t DM/ha.year for dryland and irrigated pastures, respectively. An exception was at the highest stocking rate under irrigation, where pugging during winter was associated with a 14% reduction in annual pasture growth. There were several indications that these high stocking rates may not be sustainable without substantial changes in management practice. There were large and positive nutrient balances and associated increases in soil mineral content (P < 0.01), especially for phosphorus and nitrate nitrogen, with both stocking rate and succeeding years. Levels under irrigation were considerably higher (up to 90 and 240 mg/kg of soil for nitrate nitrogen and phosphorus, respectively) than under dryland pastures (60 and 140 mg/kg, respectively). Soil organic carbon levels did not change with stocking rate, indicating a high level of utilisation of forage grown. Weed ingress was also high (to 22% DM) in all treatments and especially in heavily stocked irrigated pastures during winter. It was concluded the higher stocking rates used exceeded those that are feasible for Mediterranean pastures in this environment and upper levels of stocking are suggested to be 2.5 cows/ha for dryland pastures and 5.2 cows/ha for irrigated pastures. To sustain these suggested stocking rates will require further development of management practices to avoid large increases in soil minerals and weed invasion of pastures.
Resumo:
Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.
Resumo:
The use of the photoacoustic effect in the investigation of first- and second-order phase transitions has been examined. Changes in the amplitude of the photoacoustic signal across the phase transition are compared with changes in thermal properties such as specific heat and thermal diffusivity. The systemsstudied include NaN02, TlN03, CsN03, NH4N03, BaTiO,, COO, Cu,HgI,, V02 andV305. The current photoacoustic studies are discussed in the light of the theoretical models available.
Resumo:
This paper review the some of the recent developments in Complexity theory as applied to telephone-switching. Some of these techniques are suitable for practical implementation in India.
Resumo:
Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.
Resumo:
To experimentally investigate the effect of the “SKIM” mechanical foam fractionator on suspended material and the nutrient levels in prawn farm effluent, a series of standardised short-term treatments were applied to various effluent types in a static 10,000-litre water body. Prawn pond effluents were characterised by watercolour and dominance of phytoplankton species. Three effluent types were tested, namely 1) particulate-rich effluent with little apparent phytoplankton, 2) green mircoalgal bloom predominately made up of single celled phytoplankton, and 3) brown microalgal bloom with higher prevalence of diatoms. The effluent types were similar (P>0.05) in non-volatile particulate material, and nitrate/nitrite but varied from each other in the following ways: 1) The particulate-rich effluents were lower (P<0.05) in volatile solids (compared to brown blooms), total Kjeldahl nitrogen, dissolved organic nitrogen, dissolved organic phosphorus and chlorophyll a (compared to both green and brown blooms). 2) The brown blooms were higher (P<0.05) in ammonia (compared to green blooms), total nitrogen and total phosphorus (compared to both green and particulate-rich effluent), but were lower (P<0.05) in inorganic phosphorus (compared to both green and particulate-rich effluent). 3) The green blooms were higher (P<0.05) in dissolved (both organic and inorganic) phosphorus (compared to both brown and particulate-rich effluents). Although the effluent types varied significantly in these aspects the effect of the Skim treatment was similar for all parameters measured except total phosphorus. Bloom type and Skim-treatment period significantly (P<0.05) affected total Kjeldahl phosphorus concentrations. For all effluent types there was a continuous significant reduction (P<0.05) in total Kjeldahl phosphorus during the initial 6-hour treatment period. Levels of total suspended solids and volatile suspended solids in all effluent types were significantly (P<0.05) reduced in the first 2 hours but not thereafter. Non-volatile suspended solids were also significantly (P<0.05) reduced in the first 2 hours (30 to 40 % reduction) and a further 40% reduction occurred in the particulate-rich effluent over the next 2 hours. Mean values for total ammonia, dissolved organic nitrogen, total Kjeldahl nitrogen, total nitrogen, chlorophyll a and dissolved organic or inorganic phosphorus levels were not significantly (P>0.05) affected by the Skim unit in any bloom type during the initial 6 hours of testing. Nevertheless, non-significant nitrogen reductions did occur. Foam production by the Skim unit varied with different blooms, resulting in different concentrate volumes and different end points for separate experiments. Concentrate volumes were generally high for the particulate-rich and green blooms (175 – 370 litres) and low for the brown blooms (25 – 80 litres). This was due to the low tendency of the brown bloom to produce foam. This generated higher nutrient concentrations in the associated condensed foam, but may have limited the treatment efficiency. The results suggest that in this application, the Skim unit did not remove micro-algae as effectively as was anticipated. However, it was effective at removing other suspended solids. Considering these attributes and the other uses of this machinery documented by the manufactures, the unit’s oxygenation mixing capacities coupled with inorganic solids removal may provide a suitable mechanism for construction of a continuously mixed bioreactor that utilises the filtration and profit making abilities of bivalves.
Resumo:
There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.
Resumo:
We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.