941 resultados para Selective Catalytic-reduction
Resumo:
Formation of oxygen radicals during reduction of H2O2 or diperoxovanadate with vanadyl sulfate or ferrous sulfate was indicated by the 1:2:2:1 electron spin resonance (ESR) signals of the DMPO adduct typical of standard radical dotOH radical. Signals derived from diperoxovanadate remained unchanged in the presence of ethanol in contrast to those from H2O2. This gave the clue that they represent a different radical, possibly radical dotOV(O2)2+, formed on breaking a peroxo-bridge of diperoxovanadate complex. The above reaction mixtures evolved dioxygen or, when NADH was present, oxidized it rapidly which was accompanied by consumption of dioxygen. Operation of a cycle of peroxovanadates including this new radical is suggested to explain these redox activities both with vanadyl and ferrous sulfates. It can be triggered by ferrous ions released from cellular stores in the presence of catalytic amounts of peroxovanadates.
Resumo:
Catalytic dehydrogenation of 2-propanol over Cu-SiO2 catalyst was investigated. The undesired side reaction of dehydration can be controlled by a selective catalyst and choice of proper operating conditions. The kinetics of the heterogeneous catalytic reaction can be adequately expressed by a forward first-order and reverse second-order mechanism. The rate-controlling step with chemically pure 2-propanol is single-site surface reaction, while for the technical grade alcohol the adsorption of alcohol is rate-controlling. The static bed data are compared with the fluidized bed dat
Resumo:
The reactivity of Grignard reagents towards imines in the presence of catalytic and stoichiometric amounts of titanium alkoxides is reported.Alkylation, reduction, and coupling of imines take place. Whereas reductive coupling is the major reaction in stoichiometric reactions, alkylation is favored in catalytic reactions. Mechanistic studies clearly indicate that intermediates involved in the two reactions are different. Catalytic reactions involve a metal alkyl complex. This has been confirmed by reactions of deuterium-labeled substrates and different alkylating agents. Under the stoichiometric conditions, however, titanium olefin complexes are formed through reductive elimination, probably through a multinuclear intermediate.
Resumo:
When there is a variation in the quality of males in a population, multiple mating can lead to an increase in the genetic fitness of a female by reducing the variance of the progeny number. The extent of selective advantage obtainable by this process is investigated for a population subdivided into structured demes. It is seen that for a wide range of model parameters (deme size, distribution of male quality, local resource level), multiple mating leads to a considerable increase in the fitness. Frequency-dependent selection or a stable coexistence between polyandry and monandry can also result when the possible costs involved in multiple mating are taken into account.
Resumo:
The combustion technique produces ionically dispersed Ag on a nano-crystalline CeO2 surface. The catalysts thus produced were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties towards NO reduction, CO and hydrocarbon oxidation have been investigated using the temperature programmed reaction technique in a packed bed tubular reactor. These results are compared with alpha-Al2O3 supported finely divided Ag metal particles synthesized by the same method. Both oxidation and reduction reactions over Ag/CeO2 have been observed to occur at lower temperatures compared to Ag/Al2O3. The rate and turnover frequency of the NO+CO reaction over 1% Ag/CeO2 are 56.3 mu mol g(-1) s(-1) and 0.97 s(-1) at 225 degrees C respectively. Activation energy (E-a) values are 71 and 67 kJ mol(-1) for CO+O-2 and NO+CO reactions, respectively, over 1% Ag/CeO2 catalyst.
Resumo:
Nanocrystalline Ce1-xTixO2 (0 <= x <= 0.4) and Ce1-xTixPtyO2-delta (x = 0.15, gamma = 0.01, 0.02) solid solutions crystallizing in fluorite structure have been prepared by a single step solution combustion method. Temperature programmed reduction and XPS study of Ce1-xTixO2 (x = 0.0-04) show complete reduction of Ti4+ to Ti3+ and reduction of similar to 20% Ce4+ to Ce3+ state compared to 8% Ce4+ to Ce3+ in the case of pure CeO2 below 675 degrees C. The substitution of Ti ions in CeO2 enhances the reducibility of CeO2. Ce0.84Ti0.15Pt0.01O2-delta crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. The H/Pt atomic ratio at 30 degrees C over Ce0.84Ti0.15Pt0.01O2-delta is 5 and that over Ce0.99Pt0.01O2-delta is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce1-x-yTixPtyO2 (x = 0.15, 0.01, 0.02) compared to Ce1-xPtxO2 (x = 0.01, 0.02). Synergistic involvement of Pt2+/Pt degrees and Ti4+/Ti3+ redox couples in addition to Ce4+/Ce3+ due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near E-F is shown to be responsible for improved redox property and higher catalytic activity.
Resumo:
Organocatalysis, the use of organic molecules as catalysts, is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with countless research groups in both academia and the pharmaceutical industry around the world working on this subject. The literature review of this thesis mainly focuses on metal-free systems for hydrogen activation and organocatalytic reduction. Since these research topics are relatively new, the literature review also highlights the basic principles of the use of Lewis acid-Lewis base pairs, which do not react irreversibly with each other, as a trap for small molecules. The experimental section progresses from the first observation of the facile heterolytical cleavage of hydrogen gas by amines and B(C6F5)3 to highly active non-metal catalysts for both enantioselective and racemic hydrogenation of unsaturated nitrogen-containing compounds. Moreover, detailed studies of structure-reactivity relationships of these systems by X-ray, neutron diffraction, NMR methods and quantum chemical calculations were performed to gain further insight into the mechanism of hydrogen activation and hydrogenation by boron-nitrogen compounds.
Resumo:
Catalytic activities of some transition metal-phthalocyanine complexes towards electroreduction of molecular oxygen are examined on Nafion®-bound and bare porous carbon electrodes in 2.5 M H2SO4 electrolyte. It is found that these metal complexes exhibit better catalytic activities towards oxygen reduction with the Nafion®-bound electrodes.
Resumo:
Bioconversion of acyclic isoprenoids using a strain of Aspergillus niger results in hydroxylated metabolites with regio- and stereoselectivity. The organism carries out oxidation of the terminal allylic methyl group and the remote double bond in all the compounds tested (I-VII). However, these two activities seem to have preferential structural requirements. When an acyclic isoprenoid with a ketone functionality such as geranylacetone is used as the substrate, the organism also carries out the asymmetric reduction of the keto group. All the metabolites formed have been purified and characterized by conventional spectroscopic methods and quantification has been made by gas chromatographic analyses.
Resumo:
Very rapid (within 5 min), selective, single-step deoxygenation of layer- and chain-containing oxides, MoO3, CrO3, V2O5, alpha-VOPO4 . 2H(2)O and Ag6Mo10O33 has been accomplished using graphitic carbon in a microwave-assisted reaction. The products were found to be MoO2, Cr2O3, VO2, VPO4 and a mixture of (Ag + MoO2), respectively. Products were characterised by X-ray diffraction (XRD), differential scanning calorimetry (DSC), IR and electron paramagnetic resonance (EPR) spectroscopies. Although conventional methods of preparing these materials are tedious, the present method is simple, fast and yields very homogeneous products of good crystallinity. Our results reveal that while layer- and chain-containing oxides undergo rapid microwave-assisted carbothermal reduction, the non-layered materials do not. The high structural selectivity of these reactions is suggestive of the topochemical nature of the fast reduction process.
Resumo:
Ceria-supported Au catalyst has been synthesized by the solution combustion method for the first time and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Au is dispersed as Au as well as Au3+ states on CeO2 surface of 20-30 nm crystallites. On heating the as-prepared 1% Au/CeO2 in air, the concentration of Au3- ions on CeO2 increases at the expense of Au. Catalytic activities for CO and hydrocarbon oxidation and NO reduction over the as-prepared and the heat-treated 1% Au/CeO2 have been carried out using a temperature-programmed reaction technique in a packed bed tubular reactor. The results are compared with nano-sized Au metal particles dispersed on alpha-Al2O3 substrate prepared by the same method. All the reactions over heat-treated Au/CeO2 occur at lower temperature in comparison with the as-prepared Au/CeO2 and Au/Al2O3. The rate of NO + CO reaction over as-prepared and heat-treated 1% Au/CeO2 are 28.3 and 54.0 mumol g(-1) s(-1) at 250 and 300 degreesC respeceively. Activation energy (E,) values are 106 and 90 kJ mol(-1) for CO + O-2 reaction respectively over as-prepared and heat-treated 1% Au/CeO2 respectively.
Resumo:
In last 40 years, catalysis for NO (x) removal from exhaust gas has received much attention to achieve pollution free environment. CeO(2) has been found to play a major role in the area of exhaust catalysis due to its unique redox properties. In last several years, we have been exploring an entirely new approach of dispersing noble metal ions in CeO(2) and TiO(2) for redox catalysis. We have extensively studied Ce(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh), Ce(1-x-y) A (x) M (y) O(2-delta) (A = Ti, Zr, Sn, Fe; M = Pd, Pt) and Ti(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh, Ru) catalysts for exhaust catalysis especially NO reduction and CO oxidation, structure-property relation and mechanism of catalytic reactions. In these catalysts, lower valent noble metal ion substitution in CeO(2) and TiO(2) creates noble metal ionic sites and oxide ion vacancy. NO gets molecularly adsorbed on noble metal ion site and dissociatively adsorbed on oxide ion vacancy site. Dissociative chemisorption of NO on oxide ion vacancy leads to preferential conversion of NO to N(2) instead of N(2)O over these catalysts. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) are much more catalytically active than conventional nano crystalline noble metal catalysts especially for NO reduction.
Resumo:
Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.
Resumo:
In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO(2) photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm(2) leading to a cell efficiency of 6.50% which is comparable to that of Platinum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The usefulness of dioxomolybdenum reagents in oxo-transfer reactions have been reviewed. The redox ability of dioxomolybdenum reagent has been utilized in designing several synthetic methods, which are useful in organic synthesis. Several reactions such as oxidation of alcohols, sulfides, amines, azides olefins etc are accomplished by using dioxomolybdenum reagents. Similarly, it is also demonstrated that dioxomolybdenum complex is useful in performing reduction of aldehydes, ketones, esters, azides etc. A fine tuning of reaction conditions provides suitable conditions to perform either oxidation or reduction by using catalytic amount of reagents. The oxidation reactions are further simplified by employing the polymer supported molybdenum reagents.