905 resultados para Seismic site response analysis


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The inflammatory response is an active process in cervical cancer and may act in the progression and/or regression of the lesion. At the site of inflammation, macrophages and neutrophils are present as well as cytokines such as TNF-alpha and IFN-gamma. This study aims to evaluate the inflammatory response levels in women with cervical intraepithelial lesions (CIN) and with squamous cell carcinoma (SCC) of the cervix. Serum samples obtained from women without evidence of disease (n = 30), with CIN (n = 30) and with SCC of the cervix (n = 30) were analyzed for the activities of N-acetylglucosaminidase (NAG) and myeloperoxidase (MPO) by enzymatic assay and the serum levels of TNF-alpha and IFN-gamma by ELISA assay. The activities of NAG and MPO and the level of TNF-alpha were higher in women with CIN compared to the women with SCC. The levels of IFN-gamma were lower in the group of women with CIN compared to the group with SCC. There was not a significant association between the degree of the CIN and the staging of the SCC of the cervix and the degree of inflammation as assessed by the levels of inflammatory markers. The inflammatory response was inversely correlated with the progression of the carcinogenic process. In the three groups, the control group, women with CIN and women with invasive SCC, there was no association between the degree of preinvasive lesions and staging of the SCC of the cervix. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of this study was to evaluate and compare the quantitative and qualitative inflammatory responses and bone formation potential after implantation of polyethylene tubes filled with a new calcium hydroxide containing sealer (MBPc) and Prolloot mineral trioxide aggregate (MIA). There were 48 Wistar rats divided in three groups: Group I (control group) empty polyethylene tubes were implanted in the extraction site; group II and III, polyethylene tubes were implanted filled with ProRoot mineral trioxide aggregate (MIA) and MBPc, respectively. At 7, 15, and 30 days after tube implantation, the animals were killed, the hemi-maxillas were removed and prepared to light microscopic analyses. The scores obtained were submitted to Kruskal-Wallis statistical test (p < 0.05). Significant differences between the materials were not observed. The results showed that both materials had similar biological response.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it displayed a low efficiency for decomposing these molecules. Expression of ohrA and ohrR was specifically induced by organic hydroperoxides. These genes were expressed as monocistronic transcripts and also as a bicistronic ohrR-ohrA mRNA, generating the abundantly detected ohrA mRNA and the barely detected ohrR transcript. The bicistronic transcript appears to be processed. OhrR repressed both the ohrA and ohrR genes by binding directly to inverted repeat sequences within their promoters in a redox-dependent manner. Site-directed mutagenesis of each of the four OhrR cysteine residues indicated that the conserved Cys21 is critical to organic hydroperoxide sensing, whereas Cys126 is required for disulfide bond formation. Taken together, these phenotypic, genetic and biochemical data indicate that the response of C. violaceum to organic hydroperoxides is mediated by OhrA and OhrR. Finally, we demonstrated that oxidized OhrR, inactivated by intermolecular disulfide bond formation, is specifically regenerated via thiol-disulfide exchange by thioredoxin (but not other thiol reducing agents such as glutaredoxin, glutathione and lipoamide), providing a physiological reducing system for this thiol-based redox switch.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

INTRODUCTION: With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. METHODS: Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. RESULTS: CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74-624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85-3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. DISCUSSION: CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. CONCLUSIONS: Being aware that our findings are exclusive to the 18 patients studied with a need for replication, and that the genetic variant of CNOT1 gene, localized at intron 3, has no known functional effect, we propose a novel potential candidate locus for the modulation of the response to the immune treatment, and open a discussion on the necessity to consider the host genome as another potential variant to be evaluated when designing an immune therapy study

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In Performance-Based Earthquake Engineering (PBEE), evaluating the seismic performance (or seismic risk) of a structure at a designed site has gained major attention, especially in the past decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure (due to the future random earthquakes) at a site. For that purpose, Probabilistic Seismic Demand Analysis (PSDA) is utilized as a tool to estimate the Mean Annual Frequency (MAF) of exceeding a specified value of a structural Engineering Demand Parameter (EDP). This dissertation focuses mainly on applying an average of a certain number of spectral acceleration ordinates in a certain interval of periods, Sa,avg (T1,…,Tn), as scalar ground motion Intensity Measure (IM) when assessing the seismic performance of inelastic structures. Since the interval of periods where computing Sa,avg is related to the more or less influence of higher vibration modes on the inelastic response, it is appropriate to speak about improved IMs. The results using these improved IMs are compared with a conventional elastic-based scalar IMs (e.g., pseudo spectral acceleration, Sa ( T(¹)), or peak ground acceleration, PGA) and the advanced inelastic-based scalar IM (i.e., inelastic spectral displacement, Sdi). The advantages of applying improved IMs are: (i ) "computability" of the seismic hazard according to traditional Probabilistic Seismic Hazard Analysis (PSHA), because ground motion prediction models are already available for Sa (Ti), and hence it is possibile to employ existing models to assess hazard in terms of Sa,avg, and (ii ) "efficiency" or smaller variability of structural response, which was minimized to assess the optimal range to compute Sa,avg. More work is needed to assess also "sufficiency" and "scaling robustness" desirable properties, which are disregarded in this dissertation. However, for ordinary records (i.e., with no pulse like effects), using the improved IMs is found to be more accurate than using the elastic- and inelastic-based IMs. For structural demands that are dominated by the first mode of vibration, using Sa,avg can be negligible relative to the conventionally-used Sa (T(¹)) and the advanced Sdi. For structural demands with sign.cant higher-mode contribution, an improved scalar IM that incorporates higher modes needs to be utilized. In order to fully understand the influence of the IM on the seismis risk, a simplified closed-form expression for the probability of exceeding a limit state capacity was chosen as a reliability measure under seismic excitations and implemented for Reinforced Concrete (RC) frame structures. This closed-form expression is partuclarly useful for seismic assessment and design of structures, taking into account the uncertainty in the generic variables, structural "demand" and "capacity" as well as the uncertainty in seismic excitations. The assumed framework employs nonlinear Incremental Dynamic Analysis (IDA) procedures in order to estimate variability in the response of the structure (demand) to seismic excitations, conditioned to IM. The estimation of the seismic risk using the simplified closed-form expression is affected by IM, because the final seismic risk is not constant, but with the same order of magnitude. Possible reasons concern the non-linear model assumed, or the insufficiency of the selected IM. Since it is impossibile to state what is the "real" probability of exceeding a limit state looking the total risk, the only way is represented by the optimization of the desirable properties of an IM.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is caried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar, viscoelastic and poroelastic media is used.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Three structural typologies has been evaluated based on the nonlinear dynamic analysis (i.e. Newmark's methods for MDFs: average acceleration method with Modified Newton-Raphson iteration). Those structural typologies differ each other only for the infills presence and placement. In particular, with the term BARE FRAME: the model of the structure has two identical frames, arranged in parallel. This model constitutes the base for the generation of the other two typologies, through the addition of non-bearing walls. Whereas with the term INFILLED FRAME: the model is achieved by adding twelve infill panels, all placed in the same frame. Finally with the term PILOTIS: the model has been generated to represent structures where the first floor has no walls. Therefore the infills are positioned in only one frame in its three upper floors. All three models have been subjected to ten accelerograms using the software DRAIN 2000.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The work for the present thesis started in California, during my semester as an exchange student overseas. California is known worldwide for its seismicity and its effort in the earthquake engineering research field. For this reason, I immediately found interesting the Structural Dynamics Professor, Maria Q. Feng's proposal, to work on a pushover analysis of the existing Jamboree Road Overcrossing bridge. Concrete is a popular building material in California, and for the most part, it serves its functions well. However, concrete is inherently brittle and performs poorly during earthquakes if not reinforced properly. The San Fernando Earthquake of 1971 dramatically demonstrated this characteristic. Shortly thereafter, code writers revised the design provisions for new concrete buildings so to provide adequate ductility to resist strong ground shaking. There remain, nonetheless, millions of square feet of non-ductile concrete buildings in California. The purpose of this work is to perform a Pushover Analysis and compare the results with those of a Nonlinear Time-History Analysis of an existing bridge, located in Southern California. The analyses have been executed through the software OpenSees, the Open System for Earthquake Engineering Simulation. The bridge Jamboree Road Overcrossing is classified as a Standard Ordinary Bridge. In fact, the JRO is a typical three-span continuous cast-in-place prestressed post-tension box-girder. The total length of the bridge is 366 ft., and the height of the two bents are respectively 26,41 ft. and 28,41 ft.. Both the Pushover Analysis and the Nonlinear Time-History Analysis require the use of a model that takes into account for the nonlinearities of the system. In fact, in order to execute nonlinear analyses of highway bridges it is essential to incorporate an accurate model of the material behavior. It has been observed that, after the occurrence of destructive earthquakes, one of the most damaged elements on highway bridges is a column. To evaluate the performance of bridge columns during seismic events an adequate model of the column must be incorporated. Part of the work of the present thesis is, in fact, dedicated to the modeling of bents. Different types of nonlinear element have been studied and modeled, with emphasis on the plasticity zone length determination and location. Furthermore, different models for concrete and steel materials have been considered, and the selection of the parameters that define the constitutive laws of the different materials have been accurate. The work is structured into four chapters, to follow a brief overview of the content. The first chapter introduces the concepts related to capacity design, as the actual philosophy of seismic design. Furthermore, nonlinear analyses both static, pushover, and dynamic, time-history, are presented. The final paragraph concludes with a short description on how to determine the seismic demand at a specific site, according to the latest design criteria in California. The second chapter deals with the formulation of force-based finite elements and the issues regarding the objectivity of the response in nonlinear field. Both concentrated and distributed plasticity elements are discussed into detail. The third chapter presents the existing structure, the software used OpenSees, and the modeling assumptions and issues. The creation of the nonlinear model represents a central part in this work. Nonlinear material constitutive laws, for concrete and reinforcing steel, are discussed into detail; as well as the different scenarios employed in the columns modeling. Finally, the results of the pushover analysis are presented in chapter four. Capacity curves are examined for the different model scenarios used, and failure modes of concrete and steel are discussed. Capacity curve is converted into capacity spectrum and intersected with the design spectrum. In the last paragraph, the results of nonlinear time-history analyses are compared to those of pushover analysis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The cone penetration test (CPT), together with its recent variation (CPTU), has become the most widely used in-situ testing technique for soil profiling and geotechnical characterization. The knowledge gained over the last decades on the interpretation procedures in sands and clays is certainly wide, whilst very few contributions can be found as regards the analysis of CPT(u) data in intermediate soils. Indeed, it is widely accepted that at the standard rate of penetration (v = 20 mm/s), drained penetration occurs in sands while undrained penetration occurs in clays. However, a problem arise when the available interpretation approaches are applied to cone measurements in silts, sandy silts, silty or clayey sands, since such intermediate geomaterials are often characterized by permeability values within the range in which partial drainage is very likely to occur. Hence, the application of the available and well-established interpretation procedures, developed for ‘standard’ clays and sands, may result in invalid estimates of soil parameters. This study aims at providing a better understanding on the interpretation of CPTU data in natural sand and silt mixtures, by taking into account two main aspects, as specified below: 1)Investigating the effect of penetration rate on piezocone measurements, with the aim of identifying drainage conditions when cone penetration is performed at a standard rate. This part of the thesis has been carried out with reference to a specific CPTU database recently collected in a liquefaction-prone area (Emilia-Romagna Region, Italy). 2)Providing a better insight into the interpretation of piezocone tests in the widely studied silty sediments of the Venetian lagoon (Italy). Research has focused on the calibration and verification of some site-specific correlations, with special reference to the estimate of compressibility parameters for the assessment of long-term settlements of the Venetian coastal defences.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The envelope glycoprotein of small ruminant lentiviruses (SRLV) is a major target of the humoral immune response and contains several linear B-cell epitopes. We amplified and sequenced the genomic segment encoding the SU5 antigenic site of the envelope glycoprotein of several SRLV field isolates. With synthetic peptides based on the deduced amino acid sequences of SU5 in an enzyme-linked immunosorbent assay (ELISA), we have (i) proved the immunodominance of this region regardless of its high variability, (ii) defined the epitopes encompassed by SU5, (iii) illustrated the rapid and peculiar kinetics of seroconversion to this antigenic site, and (iv) shown the rapid and strong maturation of the avidity of the anti-SU5 antibody. Finally, we demonstrated the modular diagnostic potential of SU5 peptides. Under Swiss field conditions, the SU5 ELISA was shown to detect the majority of infected animals and, when applied in a molecular epidemiological context, to permit rapid phylogenetic classification of the infecting virus.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990’s. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three poststack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when corrected for, indicate water encroachment at the base of the producing reservoir. I also identify specific sites of leakage from various unproduced reservoirs, the result of regional pressure blowdown as explained in previous studies; those earlier studies, however, were unable to identify direct evidence of fluid movement. Of particular interest is the identification of one site where oil apparently leaked from one reservoir into a “new” reservoir that did not originally contain oil, but was ideally suited as a trap for fluids leaking from the neighboring spill-point. With continued pressure drop, oil in the new reservoir increased as more oil entered into the reservoir and expanded, liberating gas from solution. Because of the limited volume available for oil and gas in that temporary trap, oil and gas also escaped from it into the surrounding formation. I also note that some of the reservoirs demonstrate time-lapse changes only in the “gas cap” and not in the oil zone, even though gas must be coming out of solution everywhere in the reservoir. This is explained by interplay between pore-fluid modulus reduction by gas saturation decrease and dry-frame modulus increase by frame stiffening. In the second part of this work, I examine various rock-physics models in an attempt to quantitatively account for frame-stiffening that results from reduced pore-fluid pressure in the producing reservoir, searching for a model that would predict the unusual AVO features observed in the time-lapse prestack and stacked data at Teal South. While several rock-physics models are successful at predicting the time-lapse response for initial production, most fail to match the observations for continued production between Phase I and Phase II. Because the reservoir was initially overpressured and unconsolidated, reservoir compaction was likely significant, and is probably accomplished largely by uniaxial strain in the vertical direction; this implies that an anisotropic model may be required. Using Walton’s model for anisotropic unconsolidated sand, I successfully model the time-lapse changes for all phases of production. This observation may be of interest for application to other unconsolidated overpressured reservoirs under production.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Analyses of rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs revealed two regions important for tissue-specific and induced regulation of T1 kininogen.^ Although the T1 kininogen gene is inducible by inflammatory cytokines, a highly homologous K kininogen gene is minimally responsive. Moreover, the basal expression of a KK/CAT construct was 5- to 7-fold higher than that of the analogous T1K/CAT construct. To examine the molecular basis of this differential regulation, a series of promoter swapping experiments was carried out. Our transfection results showed that at least two regions in the K kininogen gene are important for its high basal expression: a distal 19-bp region (C box) constituted a binding site for CCAAT/enhancer binding protein (C/EBP) family proteins and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor-3 (HNF-3). The distal HNF-3 binding site from the K kininogen promoter demonstrated a stronger affinity than that from the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and known to enhance transcription of liver-specific genes, differential binding affinities of these factors accounted for the higher basal expression of the K kininogen gene.^ In contrast to the K kininogen C box, the T1 kininogen C box does not bind C/EBP presumably due to their two-nucleotide divergence. This sequence divergence, however, converts it to a consensus binding sequence for two IL-6-inducible transcription factors--IL-6 response element binding protein and acute-phase response factor. To functionally determine whether C box sequences are important for their differential acute-phase response, T1 and K kininogen C boxes were swapped and analyzed after transfection into Hep3B cells. Our results showed that the T1 kininogen C box is indeed one of the IL-6 response elements in T1 kininogen promoter. Furthermore, its function can be modulated by a 5$\sp\prime$-adjacent C/EBP-binding site (B box) whose mutation significantly reduced the overall induced activity. Moreover, this B box is the target site for binding and transactivation of another IL-6 inducible transcription factor C/EBP$\delta.$ Evolutionary divergence of a few critical nucleotides can either lead to subtle changes in the binding affinities of a given transcription factor or convert a binding sequence for a constitutive factor to a site recognized by an inducible factor. (Abstract shortened by UMI.) ^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Paleomagnetic analysis of sediment samples from Ocean Drilling Program (ODP) Leg 133, Site 820, 10 km from the outer edge of the Great Barrier Reef, is undertaken to investigate the mineral magnetic response to environmental (sea level) changes. Viscous remanent magnetization (VRM) of both multidomain and near-superparamagnetic origin is prevalent and largely obscures the primary remanence, except in isolated high-magnetization zones. The Brunhes/Matuyama boundary cannot be identified, but is expected to be below 120 mbsf. The only evidence that exists for a geomagnetic excursion occurs at about 33 mbsf (-135 k.y.). Only one-half the cores were oriented, and many suffered from internal rotation about the core axis, caused by coring and/or slicing. The decay of magnetic remanence below the surface layer (0-2 mbsf) is attributed to sulfate reduction processes. The magnetic susceptibility (K) record is central for describing and understanding the magnetic properties of the sediments, and their relationship to glacio-eustatic fluctuations in sea level. Three prominent magnetic susceptibility peaks, at about 7, 32, and 64 mbsf, are superimposed on a background of smaller susceptibility oscillations. Fluctuations in susceptibility and remanence in the ôbackgroundö zone are controlled predominantly by variations in the concentration, rather than the composition of ferrimagnetics, with carbonate dilution playing an important role (type-A properties). The sharp susceptibility maxima occur at the start of the marine transgressions following low stands in sea level (high d18O, glacial maxima), and are characterized by a stable single-domain remanence, with a significant contribution from ultra-fine, superparamagnetic grains (type-C properties). During the later marine transgression, the susceptibility gradually returns to low values and the remanence is carried by stable single-domain magnetite (type-B properties). The A, B, and C types of sediment have distinctive ARM/K ratios. Throughout most of the sequence a strong inverse correlation exists between magnetic susceptibility and both CaCO3 and d18O variations. However, in the sharp susceptibility peaks (early transgression), more complex phase relationships are apparent among these parameters. In particular, the K-d18O correlation switches to positive, then reverts to negative during the course of the late transgression, indicating that two distinct mechanisms are responsible for the K-d18O correlation. Lower in the sequence, where sea-level-controlled cycles of upward-coarsening sediments, we find that the initial, mud phase of each cycle has been enriched in high-coercivity magnetic material, which is indicative of more oxic conditions. The main magnetic characteristics of the sediments are thought to reflect sea-level-controlled variations in the sediment source regions and related run-off conditions. Some preliminary evidence is seen that biogenic magnetite may play a significant role in the magnetization of these sediments.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a new hazard-consistent ground motion characterization of the Itoiz dam site, located in Northern Spain. Firstly, we propose a methodology with different approximation levels to the expected ground motion at the dam site. Secondly, we apply this methodology taking into account the particular characteristics of the site and of the dam. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment method using a logic tree, which accounts for different seismic source zonings and different ground-motion attenuation relationships. The study was done in terms of peak ground acceleration and several spectral accelerations of periods coinciding with the fundamental vibration periods of the dam. In order to estimate these ground motions we consider two different dam conditions: when the dam is empty (T = 0.1 s) and when it is filled with water to its maximum capacity (T = 0.22 s). Additionally, seismic hazard analysis is done for two return periods: 975 years, related to the project earthquake, and 4,975 years, identified with an extreme event. Soil conditions were also taken into account at the site of the dam. Through the proposed methodology we deal with different forms of characterizing ground motion at the study site. In a first step, we obtain the uniform hazard response spectra for the two return periods. In a second step, a disaggregation analysis is done in order to obtain the controlling earthquakes that can affect the dam. Subsequently, we characterize the ground motion at the dam site in terms of specific response spectra for target motions defined by the expected values SA (T) of T = 0.1 and 0.22 s for the return periods of 975 and 4,975 years, respectively. Finally, synthetic acceleration time histories for earthquake events matching the controlling parameters are generated using the discrete wave-number method and subsequently analyzed. Because of the short relative distances between the controlling earthquakes and the dam site we considered finite sources in these computations. We conclude that directivity effects should be taken into account as an important variable in this kind of studies for ground motion characteristics.