999 resultados para Sedimentation rate


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The quartz contents of sediments from Hole 595A, determined by X-ray diffractometry, serve as an indicator of eolian transport of terrigenous material to the central southern Pacific. The quartz contents are very small and, within limits of analytical resolution, vary only slightly from the Cretaceous to the present. However, the accumulation rate of the eolian quartz does change significantly. The quartz accumulation reflects the changing position of the site with respect to the terrigenous source areas and the variations in wind systems through time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pelagic sediments from DSDP Hole 5O3B contain, in their carbonate abundance data, a clear record of glacial-interglacial cycles. The eolian component of those sediments was analyzed over the past four carbonate cycles, and the mass accumulation rate (MAR) and grain size of the eolian component was determined. Eolian MARs range from 24 to 169 mg/cm**2/10**3y. and commonly are higher by a factor of three to five during times of glacial retreat. Reduced contribution during periods of glaciation most likely reflects glacial-age humidity in the American source. Grain-size values (phi50) range from 8.25 to a minimum of 8.79phi-a variation in grain mass by a factor of 3.1. Larger grains reflect more vigorous atmospheric circulation, but sizes do not covary with the carbonate or eolian accumulation curves. These data suggest that the intensity of atmospheric circulation in the tropics may reflect the 42,000 y.-tilt cycle rather than the 100,000 y.-cycle of glacial advance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Within the Scotia Sea, the axis of the Antarctic Circumpolar Current (ACC) is geographically confined, and sediments therefore contain a record of palaeo-flow speed uncomplicated by ACC axis migration. We outline Holocene and Last Glacial Maximum (LGM) current-controlled sedimentation using data from 3.5-kHz profiles, cores and current meter moorings. Geophysical surveys show areas of erosion and deposition controlled by Neogene basement topography. Deposition occurs in mounded sediment drifts or flatter areas, where 500-1000 m of sediment overlies acoustic basement. 3.5-kHz profiles show parallel, continuous sub-bottom reflectors with highest sedimentation rates in the centre of the drifts, and reflectors converging towards marginal zones of non-deposition. Locally, on the flanks of continental blocks (e.g. South Georgia), downslope processes are dominant. The absence of mudwaves on the sediment drifts may result from the unsteadiness of ACC flow. A core transect from the ACC axis south to the boundary with the Weddell Gyre shows a southward decrease in biogenic content, controlled by the Polar Front and the spring sea-ice edge. Both these features lay farther north at LGM. The cores have been dated by relative abundance of the radiolarian Cycladophora davisiana, and by changes in the biogenic Ba content, a palaeoproductivity indicator. Sedimentation rates range from 3 to 17 cm/ka. The grain size of Holocene sediments shows a coarsening trend from south to north, consistent with strongest bottom-current flow near the ACC axis, though interpretation is complicated by the presence of biogenic grains. Year-long current meter records indicate mean speeds from 7 cm/s in the south to 12 cm/s in the north, with benthic storm frequency increasing northwards. LGM sediments are predominantly terrigenous and show a clearer northward-coarsening trend, with well-sorted silts in the northern Scotia Sea. Assuming a constant terrigenous source, this implies stronger ACC flow at the LGM, contrasting with weaker Weddell Gyre flow deduced from earlier work.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The evolution of oceanic and climatic conditions the northeast Indian Ocean during the last 7 m.y. is revealed in the sediments from Site 758. We present detailed and continuous records of d18O and d13C from planktonic foraminifers, weight percent calcium carbonate, weight percent coarse fraction, magnetic susceptibility, and geomagnetic reversals. Sample spacing of the records ranges from 3 to 10 cm and is equivalent to an average time interval of 2000 to 6000 yr. Despite the fact that core recovery ranged between 100% and 105%, recovery gaps as large as 2.7 m occurred at nearly every break between advanced hydraulic piston cores. Approximately 12% of the late Neogene sequence was not recovered in each of the two holes drilled at Site 758. To circumvent the discontinuity introduced by the gaps, a composite depth section was constructed from multiple cores taken from offset holes at Site 758. The resulting composite depth section extends continuously from 0 to 116 mbsf, from the Holocene to the upper Miocene. A detailed chronostratigraphy is based on geomagnetic reversals which extend from the Brunhes Chron to Chron 6, and on d18O stages 1 through 105, which span from 0 to 2.5 Ma. The d18O record is dominated by a ~40-k.y. cycle in the late Pliocene and early Pleistocene, and is followed by a change to a ~100-k.y. cycle in the late Pleistocene. The mid-Pleistocene transition between these two modes of variability occurs between d18O stages 25 and 22 (between 860 and 800 Ka). Thirteen major volcanic ash horizons from the Indonesian arc are observed throughout the sedimentary section and are dated by their relative position within the geomagnetic reversals and the d18O chronostratigraphy. Since 5 Ma, there has been a long-term decline in weight percent CaCO3 and CaCO3 mass accumulation rates, and an associated rise in non-CaCO3 mass accumulation rates. We attribute these changes to a decrease in CaCO3 productivity and an increase in terrigenous sedimentation through enhanced riverine input. Such input may be linked to rapid tectonic uplift of the Himalayas and the Tibetan Plateau via mechanisms such as the intensification of the monsoonal rains, increased fluvial erosion, and regional glaciation. The long-term increase in percent coarse fraction since 5 Ma suggests a gradual increase in CaCO3 preservation. Higher frequency fluctuations in CaCO3 preservation are superimposed on the long-term trend and are related to climate fluctuations. The abrupt drop (-50%) in CaCO3 accumulation at 3.4 Ma signals a dramatic decrease in CaCO3 production that occurred over much of the Indian Ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At Site 572, located at 1°N, 114° W (3903 m water depth), we recovered a continuous hydraulic piston cored section of upper Miocene to upper Pleistocene pelagic sediments. The sediment is composed of biogenic carbonate and silica with nonbiogenic material as a minor component. Detailed analysis of the calcium carbonate content shows that the degree of variability in carbonate deposition apparently changed markedly between the late Miocene and Pliocene at this equatorial Pacific site. During this interval carbonate mass accumulation rates decreased from 2.6 to 0.8 g/cm**2 per 10**3 yr. If we assume that variations in CaCO3 content reflect changes in the degree of dissolution, then the detailed carbonate analysis would suggest that the degree of variability in carbonate deposition decreases by a factor of 5 as the dominant wavelength of variations increases significantly. However, if the variability in carbonate concentration is described in terms of changes in mean mass accumulation, calculations then suggest that relatively small changes in noncarbonate rates may be important in controlling the observed carbonate records. In addition, the analysis suggests that the degree of variability observed in pelagic carbonate data may in part reflect total accumulation rates. Intervals with high sedimentation rates show lower amplitude variations in concentration than intervals with lower sedimentation rates for the same degree of change in the carbonate accumulation rate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this Initial Report of the Deep Sea Drilling Project, detailed studies of Sites 533 (gas hydrates) on the Blake Outer Ridge and 534 (oldest ocean history) in the Blake-Bahama Basin have provided answers to many geological and geophysical questions posed over the decade that deep drilling has been undertaken in this part of the western North Atlantic. The history of drilling and a historical review of key scientific accomplishments have been presented in the Introduction (Gradstein and Sheridan, this volume). In this final chapter we review highlights of new geological, geophysical and paleoceanographic interpretations presented in this volume, and offer a critical review of this information. We conclude with a listing of some outstanding problems and recommendations for future research, including data collection.