973 resultados para Second primary tumors
Resumo:
Surgical or conservative treatment of ACTH-producing tumors results in acute drop of the previously excessively high cortisol levels. The following associated pathophysiological changes also occur in the organism's recovery from stress, such as trauma, operation or chemotherapy of tumors. Both cases result in a regeneration of the immune system, which might even be exalted. The corresponding radiographic feature is the "rebound" enlargement of the thymus occurring about six months after remission of hypercortisolism. Histological examination reveals benign thymus hyperplasia. Especially in cases of still unknown primary tumor the appearance of this anterior mediastinal mass can lead to misdiagnosis. We present the cases of two patients with diffuse thymic hyperplasia following surgical and medical correction of hypercortisolism. One patient suffered from classic Cushing's disease responding to transsphenoidal resection of an ACTH-secreting pituitary microadenoma. Six months later CT of the chest incidentally demonstrated an anterior mediastinal mass known as thymic hyperplasia. The second patient presented with an ectopic, still unkown source of ACTH-production. Six months after medical correction of hypercortisolism CT of the thorax showed an enlargement of the anterior mediastinum. Thymectomy was performed in order to exclude thymus carcinoid. Histological examination revealed benign thymus hyperplasia with negative immunostaining. CONCLUSION: Radiologists and clinicians should be familiar with the pathophysiological changes resulting from precipitously dropping cortisol levels in order to prevent diagnostic errors and unnecessary operations.
Resumo:
OBJECTIVES: Patients with brain tumors and seizures should be treated with non-enzyme-inducing antiepileptic drugs (AED). Some of the newer drugs seem particularly suited in these patients. METHODS: Here we describe our experience with pregabalin (PGB); its effectiveness was retrospectively studied in nine consecutive patients with primary brain tumors and seizures. RESULTS: Six subjects had secondarily generalized and three simple partial seizures. Patients mostly suffered from WHO grade IV gliomas. PGB replaced enzyme inducing, inefficacious or bad tolerated AED, as add-on or monotherapy. Median follow-up was 5 (2-19) months; three patients died of their tumor. Daily median dosage was 300 mg. All subjects experienced at least a 50% seizure reduction, six were seizure-free. Side effects were reported in four patients, leading to PGB discontinuation in two. CONCLUSION: PGB appears to have a promising effectiveness in this setting, even as a monotherapy. Based on these results we embarked on a prospective controlled trial.
Resumo:
In vivo proton magnetic resonance spectroscopy (¹H-MRS) is a technique capable of assessing biochemical content and pathways in normal and pathological tissue. In the brain, ¹H-MRS complements the information given by magnetic resonance images. The main goal of the present study was to assess the accuracy of ¹H-MRS for the classification of brain tumors in a pilot study comparing results obtained by manual and semi-automatic quantification of metabolites. In vivo single-voxel ¹H-MRS was performed in 24 control subjects and 26 patients with brain neoplasms that included meningiomas, high-grade neuroglial tumors and pilocytic astrocytomas. Seven metabolite groups (lactate, lipids, N-acetyl-aspartate, glutamate and glutamine group, total creatine, total choline, myo-inositol) were evaluated in all spectra by two methods: a manual one consisting of integration of manually defined peak areas, and the advanced method for accurate, robust and efficient spectral fitting (AMARES), a semi-automatic quantification method implemented in the jMRUI software. Statistical methods included discriminant analysis and the leave-one-out cross-validation method. Both manual and semi-automatic analyses detected differences in metabolite content between tumor groups and controls (P < 0.005). The classification accuracy obtained with the manual method was 75% for high-grade neuroglial tumors, 55% for meningiomas and 56% for pilocytic astrocytomas, while for the semi-automatic method it was 78, 70, and 98%, respectively. Both methods classified all control subjects correctly. The study demonstrated that ¹H-MRS accurately differentiated normal from tumoral brain tissue and confirmed the superiority of the semi-automatic quantification method.
Resumo:
Violence has always been a part of the human experience, and therefore, a popular topic for research. It is a controversial issue, mostly because the possible sources of violent behaviour are so varied, encompassing both biological and environmental factors. However, very little disagreement is found regarding the severity of this societal problem. Most researchers agree that the number and intensity of aggressive acts among adults and children is growing. Not surprisingly, many educational policies, programs, and curricula have been developed to address this concern. The research favours programs which address the root causes of violence and seek to prevent rather than provide consequences for the undesirable behaviour. But what makes a violence prevention program effective? How should educators choose among the many curricula on the market? After reviewing the literature surrounding violence prevention programs and their effectiveness, The Second Step Violence Prevention Curriculum surfaced as unique in many ways. It was designed to address the root causes of violence in an active, student-centred way. Empathy training, anger management, interpersonal cognitive problem solving, and behavioural social skills form the basis of this program. Published in 1992, the program has been the topic of limited research, almost entirely carried out using quantitative methodologies.The purpose of this study was to understand what happens when the Second Step Violence Prevention Curriculum is implemented with a group of students and teachers. I was not seeking a statistical correlation between the frequency of violence and program delivery, as in most prior research. Rather, I wished to gain a deeper understanding of the impact ofthe program through the eyes of the participants. The Second Step Program was taught to a small, primary level, general learning disabilities class by a teacher and student teacher. Data were gathered using interviews with the teachers, personal observations, staff reports, and my own journal. Common themes across the four types of data collection emerged during the study, and these themes were isolated and explored for meaning. Findings indicate that the program does not offer a "quick fix" to this serious problem. However, several important discoveries were made. The teachers feU that the program was effective despite a lack of concrete evidence to support this claim. They used the Second Step strategies outside their actual instructional time and felt it made them better educators and disciplinarians. The students did not display a marked change in their behaviour during or after the program implementation, but they were better able to speak about their actions, the source of their aggression, and the alternatives which were available. Although they were not yet transferring their knowledge into positive action,a heightened awareness was evident. Finally, staff reports and my own journal led me to a deeper understanding ofhow perception frames reality. The perception that the program was working led everyone to feel more empowered when a violent incident occurred, and efforts were made to address the cause rather than merely to offer consequences. A general feeling that we were addressing the problem in a productive way was prevalent among the staff and students involved. The findings from this investigation have many implications for research and practice. Further study into the realm of violence prevention is greatly needed, using a balance of quantitative and qualitative methodologies. Such a serious problem can only be effectively addressed with a greater understanding of its complexities. This study also demonstrates the overall positive impact of the Second Step Violence Prevention Curriculum and, therefore, supports its continued use in our schools.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
Early diagnosis and appropriate therapy are essential for the best prognosis and quality of life in patients with primary immunodeficiency diseases (PIDDs). Experts from several Latin American countries have been meeting on a regular basis as part of an ongoing effort to improve the diagnosis and treatment of PIDD in this region. Three programmes are in development that will expand education and training and improve access to testing facilities throughout Latin America. These programmes are: an educational outreach programme (The L-Project); an immunology fellowship programme; and the establishment of a laboratory network to expand access to testing facilities. This report provides the status of these programmes based on the most recent discussions and describes the next steps toward full implementation of these programmes. (C) 2010 SEICAP. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
By analogy to gliosarcoma, the neologism "oligosarcoma" is to describe an uncommon form of biphasic central nervous system tumor composed of contiguous neuroepithelial and mesenchymal elements, each of which individually meet the criteria of oligodendroglioma and sarcoma, respectively. By virtue of its distinctive genotype (codeletion 1p/19q), oligodendroglioma is a particularly inviting paradigm to test the assumption that such mixed tumors are clonally derived from a glial primary. We observed this constellation in a 41-year-old male who underwent two resection procedures for a recurring right frontal tumor at five years' interval. On imaging, both lesions were contrast-enhancing, and measured 7 cm × 7 cm × 6.8 cm and 7 cm × 6.5 cm × 4cm, respectively. Following the first operation, temozolomide monotherapy was administered. Whereas initial histology showed conventional anaplastic oligodendroglioma, the recurrence consisted mostly of a fibrosarcoma-like, fascicular neoplasm that was immunoreactive for vimentin, smooth muscle actin, S100 protein, and focally epithelial membrane antigen. In between, a subset of otherwise indistinguishable spindle cells expressed GFAP, and focally merged with residues of oligodendroglioma. Molecular testing for loss of heterozygosity confirmed codeletion of 1p/19q in both the primary tumor and the sarcomatous recurrence. Similarly, generalized immunoreactivity for the mutant R132H form of isocitrate dehydrogenase in both lesions indicated an identical mutation of the IDH1 gene. By the above standards, biologically consistent "oligosarcomas" are felt to be exceedingly rare, and possibly participate of a nosologically heterogeneous group of combined glial/mesenchymal lesions that may also include iatrogenically induced second malignancies as well as true collision tumors.
Resumo:
Microsurgery within eloquent cortex is a controversial approach because of the high risk of permanent neurological deficit. Few data exist showing the relationship between the mapping stimulation intensity required for eliciting a muscle motor evoked potential and the distance to the motor neurons; furthermore, the motor threshold at which no deficit occurs remains to be defined.
Resumo:
Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.
Resumo:
The successful treatment of primary and secondary bone tumors in a huge number of cases remains one of the major unsolved challenges in modern medicine. Malignant primary bone tumor growth predominantly occurs in younger people, whereas older people predominantly suffer from secondary bone tumors since up to 85% of the most frequently occurring malignant solid tumors, such as lung, mammary, and prostate carcinomas, metastasize into the bone. It is well known that a tumor's course may be altered by its surrounding tissue. For this reason, reported here is the protocol for the surgical preparation of a cranial bone window in mice as well as the method to implant tumors in this bone window for further investigations of angiogenesis and other microcirculatory parameters in orthotopically growing primary or secondary bone tumors using intravital microscopy. Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since most physiologic and pathophysiologic processes are active and dynamic events, one of the major strengths of chronic animal models using intravital microscopy is the possibility of monitoring the regions of interest in vivo continuously up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various in vitro methods such as histology, immunohistochemistry, and molecular biology.
Resumo:
OBJECTIVE This study presents the first in vivo real-time optical tissue characterization during image-guided percutaneous intervention using near-infrared diffuse optical spectroscopy sensing at the tip of a needle. The goal of this study was to indicate transition boundaries from healthy tissue to tumors, namely, hepatic carcinoma, based on the real-time feedback derived from the optical measurements. MATERIALS AND METHODS Five woodchucks with hepatic carcinoma were used for this study. The woodchucks were imaged with contrast-enhanced cone beam computed tomography with a flat panel detector C-arm system to visualize the carcinoma in the liver. In each animal, 3 insertions were performed, starting from the skin surface toward the hepatic carcinoma under image guidance. In 2 woodchucks, each end point of the insertion was confirmed with pathologic examination of a biopsy sample. While advancing the needle in the animals under image guidance such as fluoroscopy overlaid with cone beam computed tomography slice and ultrasound, optical spectra were acquired at the distal end of the needles. Optical tissue characterization was determined by translating the acquired optical spectra into clinical parameters such as blood, water, lipid, and bile fractions; tissue oxygenation levels; and scattering amplitude related to tissue density. The Kruskal-Wallis test was used to study the difference in the derived clinical parameters from the measurements performed within the healthy tissue and the hepatic carcinoma. Kurtoses were calculated to assess the dispersion of these parameters within the healthy and carcinoma tissues. RESULTS Blood and lipid volume fractions as well as tissue oxygenation and reduced scattering amplitude showed to be significantly different between the healthy part of the liver and the hepatic carcinoma (P < 0.05) being higher in normal liver tissue. A decrease in blood and lipid volume fractions and tissue oxygenation as well as an increase in scattering amplitude were observed when the tip of the needle crossed the margin from the healthy liver tissue to the carcinoma. The kurtosis for each derived clinical parameter was high in the hepatic tumor as compared with that in the healthy liver indicating intracarcinoma variability. CONCLUSIONS Tissue blood content, oxygenation level, lipid content, and tissue density all showed significant differences when the needle tip was guided from the healthy tissue to the carcinoma and can therefore be used to identify tissue boundaries during percutaneous image-guided interventions.