926 resultados para Second harmonic generation (SHG)
Resumo:
Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.
Resumo:
Merocyanine dyes that exhibit antithetic cyaninelike behaviour and giant first-order hyperpolarisability (beta) values have been designed. These cyanine-type dyes open up an intriguing route towards molecular-based electrooptic materials as well as new second-harmonic generation dyes for imaging.
Resumo:
Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm. centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr-5(PO4)(3)F laser. The broad gain bandwidth can completely support similar to 6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.
Resumo:
激光诱导周期性纳米微结构在多种材料包括电介质、半导体、金属和聚合物中观察到。研究了800 nm和400 nm飞秒激光垂直聚焦于6H SiC晶体表面制备纳米微结构。实验观察到800 nm和400 nm线偏光照射样品表面分别得到周期为150 nm和80 nm的干涉条纹, 800 nm圆偏振激光单独照射样品表面得到粒径约100 nm的纳米颗粒。偏振相互垂直的800 nm和400 nm激光同时照射晶体得到粒径约100 nm的纳米颗粒阵列, 该纳米阵列的方向随400 nm激光强度增加而向400 nm偏振方向偏转。利
Resumo:
This work is concerned with a general analysis of wave interactions in periodic structures and particularly periodic thin film dielectric waveguides.
The electromagnetic wave propagation in an asymmetric dielectric waveguide with a periodically perturbed surface is analyzed in terms of a Floquet mode solution. First order approximate analytical expressions for the space harmonics are obtained. The solution is used to analyze various applications: (1) phase matched second harmonic generation in periodically perturbed optical waveguides; (2) grating couplers and thin film filters; (3) Bragg reflection devices; (4) the calculation of the traveling wave interaction impedance for solid state and vacuum tube optical traveling wave amplifiers which utilize periodic dielectric waveguides. Some of these applications are of interest in the field of integrated optics.
A special emphasis is put on the analysis of traveling wave interaction between electrons and electromagnetic waves in various operation regimes. Interactions with a finite temperature electron beam at the collision-dominated, collisionless, and quantum regimes are analyzed in detail assuming a one-dimensional model and longitudinal coupling.
The analysis is used to examine the possibility of solid state traveling wave devices (amplifiers, modulators), and some monolithic structures of these devices are suggested, designed to operate at the submillimeter-far infrared frequency regime. The estimates of attainable traveling wave interaction gain are quite low (on the order of a few inverse centimeters). However, the possibility of attaining net gain with different materials, structures and operation condition is not ruled out.
The developed model is used to discuss the possibility and the theoretical limitations of high frequency (optical) operation of vacuum electron beam tube; and the relation to other electron-electromagnetic wave interaction effects (Smith-Purcell and Cerenkov radiation and the free electron laser) are pointed out. Finally, the case where the periodic structure is the natural crystal lattice is briefly discussed. The longitudinal component of optical space harmonics in the crystal is calculated and found to be of the order of magnitude of the macroscopic wave, and some comments are made on the possibility of coherent bremsstrahlung and distributed feedback lasers in single crystals.
Resumo:
采用反射式达曼光栅建立了一种产生飞秒激光双脉冲的新装置.由于采用反射式结构,避免了材料色散和吸收导致的脉冲畸变,并构建了一台二次谐波一频率分辨光学开关装置对产生的双脉冲进行了测量.实验结果表明可以实现脉冲强度相等、时间宽度相同、不同间隔的双脉冲输出.产生双脉冲的装置在飞秒激光领域有着应用的价值.
Resumo:
基于能量守恒和三波耦合波方程, 建立了超短脉冲在参变过程中二次谐波产生时的I类和II类相位匹配条件、基波与谐波之间的群速延迟时间、以及群速失配对晶体长度限制的理论基础。以负单轴非线性光学晶体CsLiB6O10为例, 分析和数值计算了超短脉冲宽度为100 fs时, 谐波的群速匹配长度随基波波长变化的规律。研究结果表明在I类相位匹配条件下, 基波波长为642 nm时, 群速延迟最小, 相应的群速匹配晶体长度最长为19.1 mm;在II类相位匹配条件下, 基波波长为767 nm, 群速延迟最小, 群速匹配长度最
Resumo:
阐述了频率分辨光学开关法测量飞秒脉冲的原理,详细分析了模式尺寸效应和非线性效应对飞秒脉冲测量的影响。构建了一台用于飞秒脉冲测量的二次谐波-频率分辨光学开关装置,利用该装置对谐振腔输出的飞秒脉冲及压缩后的脉冲进行了测量。得到了飞秒脉冲的时间宽度及光谱宽度、电场及其相位在时域和频域的详细信息。谐振腔直接输出脉冲的时间宽度为56 fs,光谱宽度为27 nm,时间带宽积为0.686,算法中的最小误差为0.001792。脉冲压缩后的测量结果为27 fs,光谱宽度为92 nm,时间带宽积为1.27,算法误差为0.00
Resumo:
由于群速度失配的影响,飞秒光脉冲在感应到FONPS(级联五阶非线性相移)的同时,将不可避免地发生脉冲畸变.通过理论分析及数值模拟,提出了使级联五阶非线性过程运行在较大相位失配条件下的解决方案,成功地消除了脉冲畸变.并且借助于该过程中倍频效率的提高,有效地补偿由于相位失配量的增大所造成的FONPS的下降,实现飞秒基频光脉冲在感应到大的FONPS的同时无脉冲畸变发生.
Resumo:
Quadratic optical nonlinearity chi((2)) can be exploited in femtosecond lasers and regarded as a significant new degree of freedom for the design of short-pulse sources. We will review our recent progress on developing nonlinear quadratic technologies for femtosecond lasers. Our nonlinear laser technology offers new properties for femtosecond lasers, including optical parametric amplifier with novel working regime, efficient second harmonic generation, and time telescope.
Resumo:
分别通过理论和实验研究了周期性极化的钽酸锂(PPLT)倍频宽线宽准连续掺镱双包层光纤放大激光.PPLT样品长为40mm,极化周期为7.67μm.基频光的中心波长为1064nm,线宽约为6nm。从基频光的光谱特性出发,利用超晶格倍频理论,解释了实验中获得的倍频温度与二次谐波功率之间的关系.在基频光的功率为2.2W时,获得的宽线宽光纤激光倍频效率为1.8%。
Resumo:
Thin films of beta barium borate have been prepared by liquid phase epitaxy on Si2+-doped alpha-BaB2O4 (alpha-BBO, the high temperature phase of barium berate) (001) and (110) substrates. The results of X-ray diffraction indicate that the films show highly (001) preferred orientation on (001)-oriented substrates while the films grown on (110) substrates are textured with (140) orientation. The crystallinity of these films was found to depend on growth temperature, rotation rate, dip time and orientation of substrate. Growth conditions were optimized to grow films with (001) orientation on (001) substrates reproducibly. The films show second harmonic generation of 400 nm light upon irradiation with 800 nm Ti: Sapphire femtosecond laser light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
采用液相外延法在掺Sr^2+的Q—BBO(001)衬底上制备了β-BBO薄膜,研究了制备条件对薄膜质量的影响.结果表明:当生长温度为810℃时,转速为300r/min生长的外延膜具有较高的结晶质量,且随着生长时间的延长,外延膜的结晶质量有所提高.β—BBO薄膜呈C轴高度择优取向,薄膜的双晶摇摆曲线半峰宽值FWHM仅为676.6”,表明β-BBO薄膜较好的结晶质量;在不具备相位匹配的条件下,β—BBO外延膜也能够实现二次谐波输出.