961 resultados para Seasonal effects
Resumo:
In some gonochoristic species, sex is influenced not only by genotype at conception but also by the environment that offspring experience during early ontogeny (termed environmental sex determination or ESD). ESD is thought to be adaptive when seasonal variations in environmental conditions provide a sex-specific fitness advantage. In vertebrates, temperature is the most common determinant of sex, and seasonal variation in temperature serves as a temporal cue of environmental quality such as length of the growing season. Some environments, however, lack strong seasonal temperature fluctuations and other cues, particularly photoperiod, may provide a more reliable indicator of the environment offspring enter. We tested this hypothesis by rearing the offspring of the California grunion (Leuresthes tenuis, Ayres), which experiences low seasonal temperature variation in nature, under common garden conditions at three temperature and two photoperiod treatments. Our experiments revealed that both temperature and photoperiod significantly affected sex ratios in L. tenuis. More females were produced at cooler temperatures and longer day lengths, which is consistent with female biased sex ratios early in the breeding season, and likely adaptive through increased female size and fecundity. To our knowledge, this is the first documented case of photoperiod-dependent sex determination in a gonochoristic vertebrate.
Resumo:
Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 µatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 µatm were observed at the surface and >3000 µatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 µatm) in comparison to a low pCO2 outer fjord station (ca. 600 µatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.
Resumo:
1. Developing a framework for assessing interactions between multiple anthropogenic stressors remains an important goal in environmental research. In coastal ecosystems, the relative effects of aspects of global climate change (e.g. CO2 concentrations) and localized stressors (e.g. eutrophication), in combination, have received limited attention. 2. Using a long-term (11 month) field experiment, we examine how epiphyte assemblages in a tropical seagrass meadow respond to factorial manipulations of dissolved carbon dioxide (CO2(aq)) and nutrient enrichment. In situ CO2(aq) manipulations were conducted using clear, open-top chambers, which replicated carbonate parameter forecasts for the year 2100. Nutrient enrichment consisted of monthly additions of slow-release fertilizer, nitrogen (N) and phosphorus (P), to the sediments at rates equivalent to theoretical maximum rates of anthropogenic loading within the region (1.54 g N/m**2/d and 0.24 g P m**2/d). 3. Epiphyte community structure was assessed on a seasonal basis and revealed declines in the abundance of coralline algae, along with increases in filamentous algae under elevated CO2(aq). Surprisingly, nutrient enrichment had no effect on epiphyte community structure or overall epiphyte loading. Interactions between CO2(aq) and nutrient enrichment were not detected. Furthermore, CO2(aq)-mediated responses in the epiphyte community displayed strong seasonality, suggesting that climate change studies in variable environments should be conducted over extended time-scales. 4. Synthesis. The observed responses indicate that for certain locations, global stressors such as ocean acidification may take precedence over local eutrophication in altering the community structure of seagrass epiphyte assemblages. Given that nutrient-driven algal overgrowth is commonly cited as a widespread cause of seagrass decline, our findings highlight that alternate climate change forces may exert proximate control over epiphyte community structure.
Resumo:
As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.
Resumo:
This paper investigates the relationship between access to micro-credit and temporary seasonal migration, an issue which is largely ignored in the standard rural-urban migration literature. Seasonal migration due to agricultural downturns is a common phenomenon in developing countries. Using primary data from a cross-sectional household survey from the northwest part of Bangladesh, this study quantifies the factors that influence such migration decisions. Among other results, we find that network effects play a significant role in influencing the migration decision, with the presence of kinsmen at the place of destination having considerable impact. Seasonal migration is a natural choice for individual suffering periodic hardship; however the strict weekly loan repayment rules of Micro-credit Institutes can have an adverse effect on this process, reducing the ability of borrowers to react to a shock. Our result suggests that poor individuals prefer the option of not accessing the micro-credit and opt for temporal seasonal migration during the lean period. The results have numerous potential policy implications, including the design of typical micro-credit schemes.
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
This study documents marine ecological conditions at Rincon Island, located approximately 0.8 kilometer offshore between Ventura and Santa Barbara, California, in a depth of 14 meters. The island, which was constructed between 1957 and 1958 to serve as a permanent platform for oil and gas production, is particularly suitable for ecological study. Habitat features associated with the armor rock and concrete tetrapods surrounding the island support a 'microecosystem' which differs in biotic composition from surrounding natural bottom areas. A major part of the study was devoted to analysis of seasonal dynamics in biotic composition. Permanent transects extending from the high intertidal to natural bottom were established normal to each of the four cardinal sides of the island. All macrobiota were censused in duplicate 1-square meter quadrats along each transect during each of the four seasons. Data analysis indicated that many species exhibit significant variability in abundance from one season to the next. In general, the findings indicate a rich and varied fauna and flora associated with the high-relief solid substrate of Rincon Island which differs substantially from the more depauperate natural bottom habitats in the area.
Resumo:
The long-term effects of beach nourishment on the benthic infauna and surface sediments of Panama City beaches were investigated. Forty-seven stations located on nine transects between West Pass and Philips Inlet, and two nourishment borrow sites were sampled in November-December 1979 and May 1980. The data collected were compared to prenourishment base-line information collected by Saloman (1976). Abiotic parameters, water temperature, dissolved oxygen and salinity were measured. Sediments were analyzed for particle-size distribution, percent organic carbon and percent carbonate. Benthic macroinvertebrates were represented by 162 taxa of 14 major animal phyla. Species composition and faunal densities varied seasonally. Polychaetes and amphipods were the most abundant animal groups; a small number of species were dominant at nearly all stations. Species diversity was lowest in the swash zone and sandbar stations and highest offshore. Sediment composition was similar to that of Saloman's (1976) study within limits of sampling and processing errors. Faunal composition was found to be different from 1976 but was attributed to normal seasonal and spatial variations. Based on benthic community analyses and sediment parameters, no significant differences were found between nourishment borrow sites and surrounding areas and in the nearshore areas where beach nourishment was conducted. No long-term adverse effects of beach nourishment were detected. (Author).
Resumo:
Redmond Ridge East (RRE) is a large-scale master plan community in East King County, WA. In this report, I evaluate the spatial variability of the Quaternary Advance Outwash (Qva) at RRE and the time-series data for 16 water wells with the intent to better understand groundwater below the RRE area. I investigate changes between pre- and post-development conditions through the determination of temporal changes in annual water level, annual water level fluctuations, hydraulic head response to precipitation, and ambient drainage of the aquifer. I also perform a basic analysis of the annual aquifer recharge and a determination for the storage through the implementation of the water table fluctuation (WTF) method. Associated Earth Sciences (AESI) was tasked with monitoring the geological and environmental impacts during the development of RRE and collected the data I use in this report. AESI involvement in monitoring began in 1998 and extends to the present. Sixteen wells were identified in the RRE area with adequate temporal data to conduct the analysis. A comparison of the well logs and aquifer testing data allowed local variations in the Qva to be mapped. The WTF was used to determine a range of reasonable specific yield values for locations where the Qva was unconfined. Yearly average of the seasonal water level high and lows, and the fluctuations were quantified. Temporal relationships were established through linear regression. The average water level was found to be increasing in some locations, and the corresponding fluctuations were found to decrease. However, no clear change between pre- and post-development was observed. The response of hydraulic head to precipitation was investigated through an analysis of hydrographs for ten wells. Periods of consistent response and the corresponding precipitation during each period were delineated. A linear relationship between precipitation and water level change was determined. The threshold precipitation under which there is a positive response in the hydraulic head was established. No observable changes were apparent between pre- and post-development conditions. The ambient drainage for the Qva was calculated using recessional periods on the hydrograph. The transmissivity of Qva varies with thickness of the overlying lodgment till and thickness of the Qva, itself. Water level fluctuations observed in the Qva are consistent with regional observations. Localized areas in the Qva display the large 10 foot fluctuations and these anomalies are likely due to a combination of the local variability in the storativity as well as the concentration and channeling of water due to geographical variations in the Qva and the overlying topography. All trends seen in the RRE area remained relatively constant through time. There was no evidence showing an effect of development on the hydraulic head at RRE. This implies that the style and distribution of infiltration has not changed as a result of development, and that any measures in place are properly mitigating the effects of development on the RRE region.
Resumo:
Improvements in seasonal climate forecasts have potential economic implications for international agriculture. A stochastic, dynamic simulation model of the international wheat economy is developed to estimate the potential effects of seasonal climate forecasts for various countries' wheat production, exports and world trade. Previous studies have generally ignored the stochastic and dynamic aspects of the effects associated with the use of climate forecasts. This study shows the importance of these aspects. In particular with free trade, the use of seasonal forecasts results in increased producer surplus across all exporting countries. In fact, producers appear to capture a large share of the economic surplus created by using the forecasts. Further, the stochastic dimensions suggest that while the expected long-run benefits of seasonal forecasts are positive, considerable year-to-year variation in the distribution of benefits between producers and consumers should be expected. The possibility exists for an economic measure to increase or decrease over a 20-year horizon, depending on the particular sequence of years.
Resumo:
Low temperature injury (LTI) of roses (Rosa hybrida L.) is difficult to assess by visual observation. Relative chlorophyll fluorescence (CF; F-v/F-m) is a non-invasive technique that provides an index of stress effects on photosystem 11 (PS 11) activity. This instrumental technique allows determination of the photosynthetic efficiency of plant tissues containing chloroplasts, such as rose leaves. In the present study, pre- and Post-Storage measurements of F-v/F-m were carried out to assess LTI in 'First Red' and 'Akito' roses harvested year round. Relationships between the pre-harvest environment conditions of temperature, relative humidity and photon flux density (PFD), F-v/F-m, and, vase life duration after storage are reported. After harvest, roses were stored at 1, 5 and 10 degrees C for 10 days. Non-stored roses were the control treatment. F-v/F-m ratios were reduced following storage, suggesting LTI of roses. However, reductions in F-v/F-m were not closely correlated with reduced vase life duration and were seasonally dependent. Only during winter experiments was F-v/F-m of roses stored at 1 degrees C significantly (P <= 0.001) lower compared to F-v/F-m of non-stored control roses and roses stored at 5 and 10 degrees C. Thus, the fall of F-v/F-m was due to an interaction of growing season and storage at 1 degrees C. Vase lives of roses grown during winter were significantly (P <= 0.001) shorter compared to roses grown during summer. Length of vase life was intermediate for roses grown during autumn and spring. Because of the lack of correlation between F-v/F-m and post-storage vase life it is concluded that the CF parameter F-v/F-m is nota practical index for assessing LTI in cold-stored roses. Higher PFD and temperature in summer were positively and significantly correlated with maintenance of post-storage FvIF ratios and longer vase life. It is suggested that shorter vase lives and lower post-storage F-v/F-m values after storage at 1 degrees C are consequences of reduced photosynthesis and smaller carbohydrate pools in winter-harvested roses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
In the Mekong region, most paddies in rainfed lowland rice (Oryza sativa L.) lie in a sequence on gentle sloping land, and grain yield (GY) often depends on the toposequence position. There is, however, lack of information on toposequential effects on field water supply in rainfed lowland rice and how that influences GY. A total of eight field experiments were carried out on sandy, coarse-textured soils in Southern Laos (Champassak Province and Savannakhet Province) over three wet seasons (2000-2002). Components of the water balance, including downward and lateral water movement (D and L, respectively), were quantified at three different positions along toposequences (top, middle and bottom). GY, days-to-flower (DTF) and rainfall were measured, and the water productivity (WP) was determined. In most experiments, standing water disappeared first in the top position and gradually in lower positions. This was associated with the observation that when there was standing water in the field, the higher position had larger D in both the provinces and also larger L in Champassak Province. However, in one experiment, water loss appeared later in the higher position, as the result of lower L, apparently due to some water inputs other than rainfall occurring at this position. Despite larger D plus L at the top position, seasonal sum of D and L were not much affected by the toposequence position, as the daily rate of D plus L became minimal when the standing water was lost earlier in the top position. Lower GY was associated with earlier disappearance of standing water from the field. Relatively low GY was expected in the top toposequence position. This was clearly shown in the toposequence of Phonthong, Champassak Province, as the timing of standing water disappearance relative to flowering was earlier in the top position. Variation in GY across the toposequence positions was coupled with the WP variation, and both GY and WP tended to decline with increased DTF. Therefore, variation in productivity of rainfed lowland rice across toposequence positions depends mainly on the field water status around flowering time. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Understanding how climate change will affect the distribution and the phenology of plants is becoming an increasingly important topic in ecological studies. In response to climate warming, there are documented upward shift and alterations of phenology and physiology of several plant species. Despite this, the effects of climate change on plant regeneration from seeds have largely been neglected. However, regeneration from seeds, a key event in the plant life cycle, could be significantly affected by climate warming. In this regard, we investigated how climatic changes will affect the seasonal dynamics of seed germination and seedling survival in two different alpine context. The first part refers to five species inhabiting a snowbed located at the Gavia pass (Parco Naturale dello Stelvio). Here, plants were exposed, in the field, to natural conditions and to artificial warming using Open Top Chambers proposed by the ITEX (International Tundra Experiment). The germination curves of seeds produced were compared in order to highlight differences in seed germination ecology and in seed physiology induced by the climate warming. In the second part, we considered two tree species that form the treeline in Davos (Switzerland). As a surrogate of climate warming we used the natural thermal gradient driven by the altitude and we compared the germination behavior of the species studied in three sites at three different elevations in order to evaluate the likelihood of treeline shift under the predicted climate warming.
Resumo:
Animals and plants in temperate regions must adapt their life cycle to pronounced seasonal variation. The research effort that has gone into studying these cyclical life history events, or phenological traits, has increased greatly in recent decades. As phenological traits are often correlated to temperature, they are relevant to study in terms of understanding the effect of short term environmental variation as well as long term climate change. Because of this, changes in phenology are the most obvious and among the most commonly reported responses to climate change. Moreover, phenological traits are important for fitness as they determine the biotic and abiotic environment an individual encounters. Fine-tuning of phenology allows for synchronisation at a local scale to mates, food resources and appropriate weather conditions. On a between-population scale, variation in phenology may reflect regional variation in climate. Such differences can not only give insights to life cycle adaptation, but also to how populations may respond to environmental change through time. This applies both on an ecological scale through phenotypic plasticity as well as an evolutionary scale through genetic adaptation. In this thesis I have used statistical and experimental methods to investigate both the larger geographical patterns as well as mechanisms of fine-tuning of phenology of several butterfly species. The main focus, however, is on the orange tip butterfly, Anthocharis cardamines, in Sweden and the United Kingdom. I show a contrasting effect of spring temperature and winter condition on spring phenology for three out of the five studied butterfly species. For A. cardamines there are population differences in traits responding to these environmental factors between and within Sweden and the UK that suggest adaptation to local environmental conditions. All populations show a strong negative plastic relationship between spring temperature and spring phenology, while the opposite is true for winter cold duration. Spring phenology is shifted earlier with increasing cold duration. The environmental variables show correlations, for example, during a warm year a short winter delays phenology while a warm spring speeds phenology up. Correlations between the environmental variables also occur through space, as the locations that have long winters also have cold springs. The combined effects of these two environmental variables cause a complex geographical pattern of phenology across the UK and Sweden. When predicting phenology with future climate change or interpreting larger geographical patterns one must therefore have a good enough understanding of how the phenology is controlled and take the relevant environmental factors in to account. In terms of the effect of phenological change, it should be discussed with regards to change in life cycle timing among interacting species. For example, the phenology of the host plants is important for A. cardamines fitness, and it is also the main determining factor for oviposition. In summary, this thesis shows that the broad geographical pattern of phenology of the butterflies is formed by counteracting environmental variables, but that there also are significant population differences that enable fine-tuning of phenology according to the seasonal progression and variation at the local scale.
Resumo:
We have investigated vitamin C supplementation effects on immunoglobulin oxidation (carbonyls) and total plasma protein sulfhydryls in healthy human volunteers. After receiving placebo, plasma ascorbate and oxidation markers were unchanged. Following 5 weeks supplementation with vitamin C (400 mg/day), plasma ascorbate increased but no significant effect on protein oxidation was observed. At 10 and 15 weeks supplementation, carbonyl levels were significantly reduced (P < 0.01) in subjects with low baseline ascorbate (29.51 ± 5.3 μM) but not in those with normal baseline ascorbate (51.81 ± 2.3 μM). To eliminate any effect from seasonal variation in dietary antioxidant intake, a second phase was undertaken. Subjects on vitamin C for 15 weeks were randomly assigned to receive either placebo or vitamin C. No difference in plasma sulfhydryl content was observed. Subjects withdrawn from supplementation showed an increase in immunoglobulin carbonyl content (P < 0.01). This demonstrates that dietary vitamin C supplementation can reduce certain types of oxidative protein damage in subjects with low basal antioxidant. (C) 2000 Academic Press.