966 resultados para Scanning Electron Microscopic
Resumo:
In the northeast of Brazil, caprine arthritis-encephalitis (CAE) is one of the key reasons for herd productivity decreasing that result in considerable economic losses. A comparative study was carried out using computed radiography (CR), histological analysis (HA), and scanning electronic microscopy (SEM) of the joints of CAE infected and normal goats. Humerus head surface of positive animals presented reduced joint space, increased bone density, and signs of degenerative joint disease (DJD). The carpal joint presented no morphological alterations in CR in any of the animals studied. Tarsus joint was the most affected, characterized by severe DJD, absence of joint space, increased periarticular soft tissue density, edema, and bone sclerosis. Histological analysis showed chronic tissue lesions, complete loss of the surface zone, absence of proteoglycans in the transition and radial zones and destruction of the cartilage surface in the CAE positive animals. Analysis by SEM showed ulcerated lesions with irregular and folded patterns on the joint surface that distinguished the limits between areas of normal and affected cartilage. The morphological study of the joints of normal and CAE positive goats deepened understanding of the alteration in the tissue bioarchitecture of the most affected joints. The SEM finding sustained previous histological reports, similar to those found for rheumatoid arthritis, suggesting that the goat infected with CAE can be considered as a potential model for research in this area.
Resumo:
This thesis presents a new imaging technique for ultracold quantum gases. Since the first observation of Bose-Einstein condensation, ultracold atoms have proven to be an interesting system to study fundamental quantum effects in many-body systems. Most of the experiments use optical imaging rnmethods to extract the information from the system and are therefore restricted to the fundamental limitation of this technique: the best achievable spatial resolution that can be achieved is comparable to the wavelength of the employed light field. Since the average atomic distance and the length scale of characteristic spatial structures in Bose-Einstein condensates such as vortices and solitons is between 100 nm and 500 nm, an imaging technique with an adequate spatial resolution is needed. This is achieved in this work by extending the method of scanning electron microscopy to ultracold quantum gases. A focused electron beam is scanned over the atom cloud and locally produces ions which are subsequently detected. The new imaging technique allows for the precise measurement of the density distribution of a trapped Bose-Einstein condensate. Furthermore, the spatial resolution is determined by imaging the atomic distribution in one-dimensional and two-dimensional optical lattices. Finally, the variety of the imaging method is demonstrated by the selective removal of single lattice site. rn
Resumo:
Dentinal cracks are occasionally observed at the cut root face after root-end resection in apical surgery. The objective of this ex vivo study was to evaluate and compare the efficiency of visual aids to identify root-end dentinal cracks.
Resumo:
Solutions containing tin and fluoride exhibit remarkable anti-erosive properties with tin ions as a major agent. To elucidate its mechanism of action in dentine, the tin uptake on and in the tissue was investigated and related to histological findings and substance loss. Samples were treated twice daily, each treatment lasting for 2 min, with fluoride solutions [pH 4.5; 1,500 parts per million (p.p.m.) F] containing 2,100, 1,400, or 400 p.p.m. Sn as SnCl(2). In experiments 1 and 2, samples were eroded with citric acid (pH 2.3) six times each day, each treatment lasting for 5 min; in experiment 2, the demineralized organic matrix was continuously digested by collagenase; in experiment 3, no erosive challenges were performed. Sample surfaces and cross-sections were investigated using energy dispersive X-ray spectroscopy, scanning electron microscopy, and profilometry. Surface retention of tin was found in almost all treatment groups and was highest in experiment 2. On cross-sections, tin was retained within the organic matrix; in mineralized areas, tin was found mainly within a depth of 10 mum. Test solutions inhibited substance loss significantly; in experiment 2, the effect was dose-dependent. Erosion inhibition seemed to depend mainly on the incorporation of tin in the mineralized dentine when the organic portion was preserved, but on surface precipitation when the organic portion was continuously digested.
Resumo:
Tin-containing fluoride solutions can reduce erosive tissue loss, but the effects of the reaction between tin and enamel are still not clear. During a 10-d period, enamel specimens were cyclically demineralized (0.05 M citric acid, pH 2.3, 6 x 5 min d(-1)) and remineralized (between the demineralization cycles and overnight). In the negative-control group, no further treatment was performed. Three groups were treated (2 x 2 min d(-1)) with tin-containing fluoride solutions (400, 1,400 or 2,100 ppm Sn2+, all 1,500 ppm F-, pH 4.5). Three additional groups were treated with test solutions twice daily, but without demineralization. Tissue loss was determined profilometrically. Energy-dispersive X-ray spectroscopy was used to measure the tin content on and within three layers (10 mum each) beneath the surface. In addition, scanning electron microscopy was conducted. All test preparations significantly reduced tissue loss. Deposition of tin on surfaces was higher without erosion than with erosion, but no incorporation of tin into enamel was found without demineralization. Under erosive conditions, both highly concentrated solutions led to the incorporation of tin up to a depth of 20 mum; the less-concentrated solution led to small amounts of tin in the outer 10 mum. The efficacy of tin-containing solutions seems to depend mainly on the incorporation of tin into enamel.
Resumo:
During postnatal growth the parenchymal septa of rat lung undergo an impressive restructuring. While immature septa are thick and contain two capillary layers, mature septa are slender and contain a single microvascular network. Using the Mercox casting technique and scanning electron microscopy, we investigated the mode and the timing of the transformation of the pulmonary capillary bed. During the third postnatal week the parenchymal septa rapidly mature to match adult morphology. Even in adult lungs, however, remnants of the immature status are present: A capillary bilayer is regularly found at the base and the tip of the septa. Our observations support the concept that reduction of intervening tissue, partial fusion of the two capillary networks, and preferential growth lead to the mature vascular arrangement. The fact that true mature interalveolar septa show a denser capillary network than alveolar walls abutting onto pleura, bronchi, or larger vessels is consonant with the fusion theory. Towards the nonparenchyma, the capillary network surrounding every airspace had no counterpart to fuse with. From quantitative data it can be calculated that owing to lung growth, mesh size should increase more than four times between birth and adult age. The adult lung network, however, is denser than the one in young animals. This means that new meshes must be added during growth. We propose that small holes observed in sheet-like regions of the microvasculature enlarge to form new capillary meshes. With this mechanism of in-itself or intussusceptional growth, sprouting of individual capillary segments to increase network size is no longer needed.
Resumo:
The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.
Resumo:
Dendritic spines are sites of the vast majority of excitatory synaptic input to hippocampal CA1 pyramidal cells. Estrogen has been shown to increase the density of dendritic spines on CA1 pyramidal cell dendrites in adult female rats. In parallel with increased spine density, estrogen has been shown also to increase the number of spine synapses formed with multiple synapse boutons (MSBs). These findings suggest that estrogen-induced dendritic spines form synaptic contacts with preexisting presynaptic boutons, transforming some previously single synapse boutons (SSBs) into MSBs. The goal of the current study was to determine whether estrogen-induced MSBs form multiple synapses with the same or different postsynaptic cells. To quantify same-cell vs. different-cell MSBs, we filled individual CA1 pyramidal cells with biocytin and serially reconstructed dendrites and dendritic spines of the labeled cells, as well as presynaptic boutons in synaptic contact with labeled and unlabeled (i.e., different-cell) spines. We found that the overwhelming majority of MSBs in estrogen-treated animals form synapses with more than one postsynaptic cell. Thus, in addition to increasing the density of excitatory synaptic input to individual CA1 pyramidal cells, estrogen also increases the divergence of input from individual presynaptic boutons to multiple postsynaptic CA1 pyramidal cells. These findings suggest the formation of new synaptic connections between previously unconnected hippocampal neurons.