991 resultados para Salt Lake City, Utah
Resumo:
Infectious diseases such as SARS, influenza and bird flu may spread exponentially throughout communities. In fact, most infectious diseases remain major health risks due to the lack of vaccine or the lack of facilities to deliver the vaccines. Conventional vaccinations are based on damaged pathogens, live attenuated viruses and viral vectors. If the damage was not complete, the vaccination itself may cause adverse effects. Therefore, researchers have been prompted to prepare viable replacements for the attenuated vaccines that would be more effective and safer to use. DNA vaccines are generally composed of a double stranded plasmid that includes a gene encoding the target antigen under the transcriptional directory and control of a promoter region which is active in cells. Plasmid DNA (pDNA) vaccines allow the foreign genes to be expressed transiently in cells, mimicking intracellular pathogenic infection and inducing both humoral and cellular immune responses. Currently, because of their highly evolved and specialized components, viral systems are the most effective means for DNA delivery, and they achieve high efficiencies (generally >90%), for both DNA delivery and expression. As yet, viral-mediated deliveries have several limitations, including toxicity, limited DNA carrying capacity, restricted target to specific cell types, production and packing problems, and high cost. Thus, nonviral systems, particularly a synthetic DNA delivery system, are highly desirable in both research and clinical applications.
Resumo:
Plasmid DNA for therapeutic and vaccination purposes must be highly purified. The high selectivity of affinity chromatography makes it ideal for the isolation of pDNA from complex biological feed stocks. Affinity chromatography makes use of the biological function and/or individual chemical structure of the interacting molecules. However, the success of any affinity purification protocol is dependent on the availability of suitable ligands. In this study, surface plasmon resonance (SPR) based Biacore system has been employed for the detection and quantification of the binding between lac operon (lacO) sequence contained in a pDNA and synthetic peptides based on the DNA-binding domain of the lac repressor protein, lad. The equilibrium dissociation constant (K D) and association and dissociation rate constants (ka, kd) for the interaction between plasmid DNA and designed peptides were determined.
Resumo:
Infectious diseases such as SARS, influenza and bird flu have the potential to cause global pandemics; a key intervention will be vaccination. Hence, it is imperative to have in place the capacity to create vaccines against new diseases in the shortest time possible. In 2004, The Institute of Medicine asserted that the world is tottering on the verge of a colossal influenza outbreak. The institute stated that, inadequate production system for influenza vaccines is a major obstruction in the preparation towards influenza outbreaks. Because of production issues, the vaccine industry is facing financial and technological bottlenecks: In October 2004, the FDA was caught off guard by the shortage of flu vaccine, caused by a contamination in a US-based plant (Chiron Corporation), one of the only two suppliers of US flu vaccine. Due to difficulties in production and long processing times, the bulk of the world's vaccine production comes from very small number of companies compared to the number of companies producing drugs. Conventional vaccines are made of attenuated or modified forms of viruses. Relatively high and continuous doses are administered when a non-viable vaccine is used and the overall protective immunity obtained is ephemeral. The safety concerns of viral vaccines have propelled interest in creating a viable replacement that would be more effective and safer to use.
Resumo:
History of family and name.