757 resultados para Saban, Nick
Resumo:
Gemstone Team MICE (Modifying and Improving Computer Ergonomics)
Resumo:
Gemstone Team Small Business Solutions
Resumo:
In 2014 alone, over 12,000 women are expected to be diagnosed with cervical cancer. Of these women who are diagnosed, about 3,909 will result in death. Despite developments in prevention methods, cervical cancer remains a major health concern for women. Growing evidence suggests that Salvianolic acid B (Sal B), a major component of the Chinese herb Danshen, may inhibit cancer cell growth and help fight against cervical cancer. This study characterizes the potential of Sal B as a cervical cancer drug through in vitro testing on HeLa cells. We hypothesized that application of Sal B to HeLa cells will result in decreased cell viability and increased apoptosis in a dose dependent manner. HeLa cells were treated with varying concentrations of Sal B: 25µM, 50µM, 100µM, and 200µM. Cell viability was determined through colony formation assay, cell death ELISA, and nuclear morphology. An inhibitor study was also conducted for further apoptosis pathway analysis. Colony formation assay demonstrated a significant decrease in cell viability with increasing concentrations of Sal B with 75% viability at 50µM down to 0% viability at 200µM. Cell death ELISA and the analysis of nuclear morphology via Hoechst staining reported significant levels of apoptosis at concentrations equal to 50µM and greater. Furthermore, experiments using caspase inhibitors indicated that Sal B’s apoptotic effects are caspase-8 dependent. In conclusion, our results demonstrate that Sal B inhibits cancer cell growth by a mechanism that involves apoptosis induction through the extrinsic pathway.
Resumo:
A comprehensive simulation of solidification/melting processes requires the simultaneous representation of free surface fluid flow, heat transfer, phase change, non-linear solid mechanics and, possibly, electromagnetics together with their interactions in what is now referred to as "multi-physics" simulation. A 3D computational procedure and software tool, PHYSICA, embedding the above multi-physics models using finite volume methods on unstructured meshes (FV-UM) has been developed. Multi-physics simulations are extremely compute intensive and a strategy to parallelise such codes has, therefore, been developed. This strategy has been applied to PHYSICA and evaluated on a range of challenging multi-physics problems drawn from actual industrial cases.
Resumo:
FEA and CFD analysis is becoming ever more complex with an emerging demand for simulation software technologies that can address ranges of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and length scales. Computation modelling of such problems requires software technologies that enable the representation of these complex suites of 'physical' interactions. This functionality requires the structuring of simulation modules for specific physical phemonmena so that the coupling can be effectiely represented. These 'multi-physics' and 'multi-scale' computations are very compute intensive and so the simulation software must operate effectively in parallel if it is to be used in this context. Of course the objective of 'multi-physics' and 'multi-scale' simulation is the optimal design of engineered systems so optimistation is an important feature of such classes of simulation. In this presentation, a multi-disciplinary approach to simulation based optimisation is described with some key examples of application to challenging engineering problems.
Resumo:
CFD modelling of 'real-life' processes often requires solutions in complex three dimensional geometries, which can often result in meshes where aspects of it are badly distorted. Cell-centred finite volume methods, typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes which feature cells with high non-orthogonal shapes. The vertex-based finite volume method handles distorted meshes with relative ease, but is computationally expensive. A combined vertex-based - cell-centred (VB-CC) technique, detailed in this paper, allows solutions on distorted meshes that defeat purely cell-centred physical models to be employed in the solution of other transported quantities. The VB-CC method is validated with benchmark solutions for thermally driven flow and turbulent flow. An early application of this hybrid technique is to three-dimensional flow over an aircraft wing, although it is planned to use it in a wide variety of processing applications in the future.
Resumo:
Solidification and melting processes involve a range of physical phenomena and their interactions (i.e., multiphysics). Computational modeling of such processes presents a significant challenge, both in representing the physics involved and in handling the resulting coupled behavior. Two methods for the computational modeling of multiphysics processes in complex geometries are highlighted in the context of four challenging applications
Resumo:
The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.
Resumo:
A comprehensive solution of solidification/melting processes requires the simultaneous representation of free surface fluid flow, heat transfer, phase change, nonlinear solid mechanics and, possibly, electromagnetics together with their interactions, in what is now known as multiphysics simulation. Such simulations are computationally intensive and the implementation of solution strategies for multiphysics calculations must embed their effective parallelization. For some years, together with our collaborators, we have been involved in the development of numerical software tools for multiphysics modeling on parallel cluster systems. This research has involved a combination of algorithmic procedures, parallel strategies and tools, plus the design of a computational modeling software environment and its deployment in a range of real world applications. One output from this research is the three-dimensional parallel multiphysics code, PHYSICA. In this paper we report on an assessment of its parallel scalability on a range of increasingly complex models drawn from actual industrial problems, on three contemporary parallel cluster systems.
Resumo:
This paper provides an overview of the developing needs for simulation software technologies for the computational modelling of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and space scales. Computational modelling of such problems requires software tech1nologies that enable the mathematical description of the interacting physical phenomena together with the solution of the resulting suites of equations in a numerically consistent and compatible manner. This functionality requires the structuring of simulation modules for specific physical phenomena so that the coupling can be effectively represented. These multi-physics and multi-scale computations are very compute intensive and the simulation software must operate effectively in parallel if it is to be used in this context. An approach to these classes of multi-disciplinary simulation in parallel is described, with some key examples of application to2 challenging engineering problems.