1000 resultados para SSA CALORIMETRIC TECHNIQUE
Resumo:
Mediastinitis as a complication after cardiac surgery is rare but disastrous increasing the hospital stay, hospital costs, morbidity and mortality. It occurs in 1-3 % of patients after median sternotomy. The purpose of this study was to find out the risk factors and also to investigate new ways to prevent mediastinitis. First, we assessed operating room air contamination monitoring by comparing the bacteriological technique with continuous particle counting in low level contamination achieved by ultra clean garment options in 66 coronary artery bypass grafting operations. Second, we examined surgical glove perforations and the changes in bacterial flora of surgeons' fingertips in 116 open-heart operations. Third, the effect of gentamicin-collagen sponge on preventing surgical site infections (SSI) was studied in randomized controlled study with 557 participants. Finally, incidence, outcome, and risk factors of mediastinitis were studied in over 10,000 patients. With the alternative garment and textile system (cotton group and clean air suit group), the air counts fell from 25 to 7 colony-forming units/m3 (P<0.01). The contamination of the sternal wound was reduced by 46% and that of the leg wound by >90%. In only 17% operations both gloves were found unpunctured. Frequency of glove perforations and bacteria counts of hands were found to increase with operation time. With local gentamicin prophylaxis slightly less SSIs (4.0 vs. 5.9%) and mediastinitis (1.1 vs. 1.9%) occurred. We identified 120/10713 cases of postoperative mediastinitis (1.1%). During the study period, the patient population grew significantly older, the proportion of women and patients with ASA score >3 increased significantly. In multivariate logistic regression analysis, the only significant predictor for mediastinitis was obesity. Continuous particle monitoring is a good intraoperative method to control the air contamination related to the theatre staff behavior during individual operation. When a glove puncture is detected, both gloves are to be changed. Before donning a new pair of gloves, the renewed disinfection of hands will help to keep their bacterial counts lower even towards the end of long operation. Gentamicin-collagen sponge may have beneficial effects on the prevention of SSI, but further research is needed. Mediastinitis is not diminishing. Larger populations at risk, for example proportions of overweight patients, reinforce the importance of surveillance and pose a challenge in focusing preventive measures.
Resumo:
Continuous epidural analgesia (CEA) and continuous spinal postoperative analgesia (CSPA) provided by a mixture of local anaesthetic and opioid are widely used for postoperative pain relief. E.g., with the introduction of so-called microcatheters, CSPA found its way particularly in orthopaedic surgery. These techniques, however, may be associated with dose-dependent side-effects as hypotension, weakness in the legs, and nausea and vomiting. At times, they may fail to offer sufficient analgesia, e.g., because of a misplaced catheter. The correct position of an epidural catheter might be confirmed by the supposedly easy and reliable epidural stimulation test (EST). The aims of this thesis were to determine a) whether the efficacy, tolerability, and reliability of CEA might be improved by adding the α2-adrenergic agonists adrenaline and clonidine to CEA, and by the repeated use of EST during CEA; and, b) the feasibility of CSPA given through a microcatheter after vascular surgery. Studies I IV were double-blinded, randomized, and controlled trials; Study V was of a diagnostic, prospective nature. Patients underwent arterial bypass surgery of the legs (I, n=50; IV, n=46), total knee arthroplasty (II, n=70; III, n=72), and abdominal surgery or thoracotomy (V, n=30). Postoperative lumbar CEA consisted of regular mixtures of ropivacaine and fentanyl either without or with adrenaline (2 µg/ml (I) and 4 µg/ml (II)) and clonidine (2 µg/ml (III)). CSPA (IV) was given through a microcatheter (28G) and contained either ropivacaine (max. 2 mg/h) or a mixture of ropivacaine (max. 1 mg/h) and morphine (max. 8 µg/h). Epidural catheter tip position (V) was evaluated both by EST at the moment of catheter placement and several times during CEA, and by epidurography as reference diagnostic test. CEA and CSPA were administered for 24 or 48 h. Study parameters included pain scores assessed with a visual analogue scale, requirements of rescue pain medication, vital signs, and side-effects. Adrenaline (I and II) had no beneficial influence as regards the efficacy or tolerability of CEA. The total amounts of epidurally-infused drugs were even increased in the adrenaline group in Study II (p=0.02, RM ANOVA). Clonidine (III) augmented pain relief with lowered amounts of epidurally infused drugs (p=0.01, RM ANOVA) and reduced need for rescue oxycodone given i.m. (p=0.027, MW-U; median difference 3 mg (95% CI 0 7 mg)). Clonidine did not contribute to sedation and its influence on haemodynamics was minimal. CSPA (IV) provided satisfactory pain relief with only limited blockade of the legs (no inter-group differences). EST (V) was often related to technical problems and difficulties of interpretation, e.g., it failed to identify the four patients whose catheters were outside the spinal canal already at the time of catheter placement. As adjuvants to lumbar CEA, clonidine only slightly improved pain relief, while adrenaline did not provide any benefit. The role of EST applied at the time of epidural catheter placement or repeatedly during CEA remains open. The microcatheter CSPA technique appeared effective and reliable, but needs to be compared to routine CEA after peripheral arterial bypass surgery.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Resumo:
Cracks in civil structures can result in premature failure due to material degradation and can result in both financial loss and environmental consequences. This thesis reports an effective technique using Acoustic Emission (AE) technique to assess the severity of the crack propagation in steel structures. The outcome of this work confirms that combination of AE parametric analysis and signal processing techniques can be used to evaluate crack propagation under different loading configurations. The technique has potential application to assess and monitor the condition of civil structures.
Resumo:
In this paper, a new technique is presented to increase the bandwidth for a single stage amplifier. Usually, -3 dB bandwidth of single stage amplifier is in few MHz. High output impedance and subsequent capacitive loading decrease the bandwidth of amplifier. The presented technique uses a load which itself acts as bandwidth enhancer. This high speed amplifier is designed on 180 nm CMOS technology, operates at 2.5 V power supply. This amplifier is succeeded by an output buffer to achieve a better linearity, high output swing and required output impedance for matching.
Resumo:
A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 °C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.
Resumo:
Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.
Resumo:
This paper presents design of a Low power 256x72 bit TCAM in 0.13um CMOS technology. In contrast to conventional Match line (ML) sensing scheme in which equal power is consumed irrespective of match or mismatch, the ML scheme employed in this design allocates less power to match decisions involving a large number of mismatched bits. Typically, the probability of mismatch is high so this scheme results in significant CAM power reduction. We propose to use this technique along with pipelining of search operation in which the MLs are broken into several segments. Since most words fail to match in first segment, the search operation for subsequent segments is discontinued, resulting in further reduction in power consumption. The above architecture provides 70% power reduction while performing search in 3ns.
Resumo:
Sormen koukistajajännevamman korjauksen jälkeisen aktiivisen mobilisaation on todettu johtavan parempaan toiminnalliseen lopputulokseen kuin nykyisin yleisesti käytetyn dynaamisen mobilisaation. Aktiivisen mobilisaation ongelma on jännekorjauksen pettämisriskin lisääntyminen nykyisten ommeltekniikoiden riittämättömän vahvuuden vuoksi. Jännekorjauksen lujuutta on parannettu kehittämällä monisäieommeltekniikoita, joissa jänteeseen tehdään useita rinnakkaisia ydinompeleita. Niiden kliinistä käyttöä rajoittaa kuitenkin monimutkainen ja aikaa vievä tekninen suoritus. Käden koukistajajännekorjauksessa käytetään yleisesti sulamattomia ommelmateriaaleja. Nykyiset käytössä olevat biohajoavat langat heikkenevät liian nopeasti jänteen paranemiseen nähden. Biohajoavan laktidistereokopolymeeri (PLDLA) 96/4 – langan vetolujuuden puoliintumisajan sekä kudosominaisuuksien on aiemmin todettu soveltuvan koukistajajännekorjaukseen. Tutkimuksen tavoitteena oli kehittää välittömän aktiivisen mobilisaation kestävä ja toteutukseltaan yksinkertainen käden koukistajajännekorjausmenetelmä biohajoavaa PLDLA 96/4 –materiaalia käyttäen. Tutkimuksessa analysoitiin viiden eri yleisesti käytetyn koukistajajänneompeleen biomekaanisia ominaisuuksia staattisessa vetolujuustestauksessa ydinompeleen rakenteellisten ominaisuuksien – 1) säikeiden (lankojen) lukumäärän, 2) langan paksuuden ja 3) ompeleen konfiguraation – vaikutuksen selvittämiseksi jännekorjauksen pettämiseen ja vahvuuteen. Jännekorjausten näkyvän avautumisen todettiin alkavan perifeerisen ompeleen pettäessä voima-venymäkäyrän myötöpisteessä. Ydinompeleen lankojen lukumäärän lisääminen paransi ompeleen pitokykyä jänteessä ja suurensi korjauksen myötövoimaa. Sen sijaan paksumman (vahvemman) langan käyttäminen tai ompeleen konfiguraatio eivät vaikuttaneet myötövoimaan. Tulosten perusteella tutkittiin mahdollisuuksia lisätä ompeleen pitokykyä jänteestä yksinkertaisella monisäieompeleella, jossa ydinommel tehtiin kolmen säikeen polyesterilangalla tai nauhamaisen rakenteen omaavalla kolmen säikeen polyesterilangalla. Nauhamainen rakenne lisäsi merkitsevästi ompeleen pitokykyä jänteessä parantaen myötövoimaa sekä maksimivoimaa. Korjauksen vahvuus ylitti aktiivisen mobilisaation jännekorjaukseen kohdistaman kuormitustason. PLDLA 96/4 –langan soveltuvuutta koukistajajännekorjaukseen selvitettiin tutkimalla langan biomekaanisia ominaisuuksia ja solmujen pito-ominaisuuksia staattisessa vetolujuustestauksessa verrattuna yleisimmin jännekorjauksessa käytettävään punottuun polyesterilankaan (Ticron®). PLDLA –langan todettiin soveltuvan hyvin koukistajajännekorjaukseen, sillä se on polyesterilankaa venymättömämpi ja solmujen pitävyys on parempi. Viimeisessä vaiheessa tutkittiin PLDLA 96/4 –langasta valmistetulla kolmisäikeisellä, nauhamaisella jännekorjausvälineellä tehdyn jännekorjauksen kestävyyttä staattisessa vetolujuustestauksessa sekä syklisessä kuormituksessa, joka simuloi staattista testausta paremmin mobilisaation toistuvaa kuormitusta. PLDLA-korjauksen vahvuus ylitti sekä staattisessa että syklisessä kuormituksessa aktiivisen mobilisaation edellyttämän vahvuuden. Nauhamaista litteää ommelmateriaalia ei aiemmin ole tutkittu tai käytetty käden koukistajajännekorjauksessa. Tässä tutkimuksessa ommelmateriaalin nauhamainen rakenne paransi merkitsevästi jännekorjauksen vahvuutta, minkä arvioidaan johtuvan lisääntyneestä kontaktipinnasta jänteen ja ommelmateriaalin välillä estäen ompeleen läpileikkautumista jänteessä. Tutkimuksessa biohajoavasta PLDLA –materiaalista valmistetulla rakenteeltaan nauhamaisella kolmisäikeisellä langalla tehdyn jännekorjauksen vahvuus saavutti aktiivisen mobilisaation edellyttämän tason. Lisäksi uusi menetelmä on helppokäyttöinen ja sillä vältetään perinteisten monisäieompeleiden tekniseen suoritukseen liittyvät ongelmat.
Resumo:
DNA amplification using Polymerase Chain Reaction (PCR) in a small volume is used in Lab-on-a-chip systems involving DNA manipulation. For few microliters of volume of liquid, it becomes difficult to measure and monitor the thermal profile accurately and reproducibly, which is an essential requirement for successful amplification. Conventional temperature sensors are either not biocompatible or too large and hence positioned away from the liquid leading to calibration errors. In this work we present a fluorescence based detection technique that is completely biocompatible and measures directly the liquid temperature. PCR is demonstrated in a 3 ILL silicon-glass microfabricated device using non-contact induction heating whose temperature is controlled using fluorescence feedback from SYBR green I dye molecules intercalated within sensor DNA. The performance is compared with temperature feedback using a thermocouple sensor. Melting curve followed by gel electrophoresis is used to confirm product specificity after the PCR cycles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.
Resumo:
Although Pb(Zr1-XTiX)O-3 solid solution is the cornerstone of the piezoelectric ceramics, there is no information in the literature on thermodynamic activities of the component phases in the solid solution. Using inter-crystalline ion exchange equilibria between Pb(Zr1-XTiX)O-3 solid solution with cubic perovskite structure and (Zr1-YTiY)O-2 solid solutions with monoclinic and tetragonal structures, activities of PbTiO3 and PbZrO3 in the perovskite solid solution have been derived at 1373 K using the modified Gibbs-Duhem integration technique of Jacob and Jeffes. Tie-lines from the cubic solid solution are skewed towards the ZrO2 corner. Activities in the zirconia-rich (Zr1-YTiY)02 solid solutions are taken from a recent emf study. The results for the perovskite solid solution at 1373 K can be represented by a sub-regular solution model: Delta G(E.M) (J mol(-1)) = X-PbTiO3 X-PbZrO3(5280X(PbTiO3) - 1980X(PbZrO3)) where Delta G(E.M) is the excess Gibbs energy of mixing of the cubic solid solution and Xi represents the mole fraction of component i. There is a significant positive deviation from ideality for PbTiO3-rich compositions and mild negative deviation near the PbZrO3 corner. The cubic solid solution is intrinsically stable against composition fluctuations at temperatures down to 840 K. The results contrast sharply with the recent calorimetric data on enthalpy of mixing which signal instability of the cubic perovskite solid solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This thesis presents a novel application of x-ray Compton scattering to structural studies of molecular liquids. Systematic Compton-scattering experiments on water have been carried out with unprecedented accuracy at third-generation synchrotron-radiation laboratories. The experiments focused on temperature effects in water, the water-to-ice phase transition, quantum isotope effects, and ion hydration. The experimental data is interpreted by comparison with both model computations and ab initio molecular-dynamics simulations. Accordingly, Compton scattering is found to provide unique intra- and intermolecular structural information. This thesis thus demonstrates the complementarity of the technique to traditional real-space probes for studies on the local structure of water and, more generally, molecular liquids.
Resumo:
A simple analog instrumentation for Electrical Impedance Tomography is developed and calibrated using the practical phantoms. A constant current injector consisting of a modified Howland voltage controlled current source fed by a voltage controlled oscillator is developed to inject a constant current to the phantom boundary. An instrumentation amplifier, 50 Hz notch filter and a narrow band pass filter are developed and used for signal conditioning. Practical biological phantoms are developed and the forward problem is studied to calibrate the EIT-instrumentation. An array of sixteen stainless steel electrodes is developed and placed inside the phantom tank filled with KCl solution. 1 mA, 50 kHz sinusoidal current is injected at the phantom boundary using adjacent current injection protocol. The differential potentials developed at the voltage electrodes are measured for sixteen current injections. Differential voltage signal is passed through an instrumentation amplifier and a filtering block and measured by a digital multimeter. A forward solver is developed using Finite Element Method in MATLAB7.0 for solving the EIT governing equation. Differential potentials are numerically calculated using the forward solver with a simulated current and bathing solution conductivity. Measured potential data is compared with the differential potentials calculated for calibrating the instrumentation to acquire the voltage data suitable for better image reconstruction.