919 resultados para SHARP DIFFRACTION PEAK
Resumo:
A mathematical model that describes the behavior of low-resolution Fresnel lenses encoded in any low-resolution device (e.g., a spatial light modulator) is developed. The effects of low-resolution codification, such the appearance of new secondary lenses, are studied for a general case. General expressions for the phase of these lenses are developed, showing that each lens behaves as if it were encoded through all pixels of the low-resolution device. Simple expressions for the light distribution in the focal plane and its dependence on the encoded focal length are developed and commented on in detail. For a given codification device an optimum focal length is found for best lens performance. An optimization method for codification of a single lens with a short focal length is proposed.
Resumo:
A mathematical model describing the behavior of low-resolution Fresnel encoded lenses (LRFEL's) encoded in any low-resolution device (e.g., a spatial light modulator) has recently been developed. From this model, an LRFEL with a short focal length was optimized by our imposing the maximum intensity of light onto the optical axis. With this model, analytical expressions for the light-amplitude distribution, the diffraction efficiency, and the frequency response of the optimized LRFEL's are derived.
Resumo:
Several ribbons of composition Fe73.5Cu1Nb 3Si16.5B6 and Fe73.5Cu1 Nb3Si13.5B9 were prepared by annealing the as-quenched samples between 525°C and 700°C; which induced nucleation of nanocrystallites of Fe bcc-type composition. Mean grain sizes were obtained from X-ray diffraction. Static magnetic properties were measured with both a Magnet Physik Hysteresis-Graph (up to 200 Oe) and a SHE SQUID magnetometer (up to 50 kOe). Soft magnetic parameters (coercive field and initial permeability) were very sensitive to grain size. The ZFC magnetization at low field showed a broad peak at a temperature TM, thus signalling a certain distribution of nanocrystalline sizes, and TM strongly decreased when the mean grain size decreased. Isothermal magnetization curves at low temperature showed the expected asymptotic behavior of a random magnet material at low and high fields.
Resumo:
Investigation of violent death, especially cases of sharp trauma and gunshot, is an important part of medico-legal investigations. Beside the execution of a conventional autopsy, the performance of a post-mortem Multi-Detector Computed Tomography (MDCT)-scan has become a highly appreciated tool. In order to investigate also the vascular system, post-mortem CT-angiography has been introduced. The most studied and widespread technique is the Multi-phase post-mortem CT-angiography (MPMCTA). Its sensitivity to detect vascular lesions is even superior to conventional autopsy. The application of MPMCTA for cases of gunshot and sharp-trauma is therefore an obvious choice, as vascular lesions are common in such victims. In most cases of sharp trauma and in several cases of gunshots, death can be attributed to exsanguinations. MPMCTA is able to detect the exact source of bleeding and also to visualize trajectories, which are of most importance in these cases. The reconstructed images allow to clearly visualizing the trajectory in a way that is easily comprehensible for not medically trained legal professionals. The sensitivity of MPMCTA for soft tissue and organ lesions approximately matches the sensitivity of conventional autopsy. However, special care, experience and effective use of the imaging software is necessary for performing the reconstructions of the trajectory. Large volume consuming haemorrhages and shift of inner organs are sources of errors and misinterpretations. This presentation shall give an overview about the advantages and limitations of the use of MPMCTA for investigating cases of gunshot and sharp-trauma.
Resumo:
Several European telecommunications regulatory agencies have recently introduced a fixed capacity charge (flat rate) to regulate access to the incumbent's network. The purpose of this paper is to show that the optimal capacity charge and the optimal access-minute charge analysed by Armstrong, Doyle, and Vickers (1996) have a similar structure and imply the same payment for the entrant. I extend the analysis tothe case where there is a competitor with market power. In this case, the optimalcapacity charge should be modified to avoid that the entrant cream-skims the market,fixing a longer or a shorter peak period than the optimal. Finally, I consider a multiproduct setting, where the effect of the product differentiation is exacerbated.
Resumo:
Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.
Resumo:
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The deltaO-18(SMOW) values of the quartz (after coesite) (delta O-18 = 8.1 to 8.6 parts per thousand, n = 6), phengite (6.2 to 6.4 parts per thousand, n = 3), kyanite (6.1 parts per thousand, n = 2), garnet (5.5 to 5.8 parts per thousand, n = 9), ellenbergerite (6.3 parts per thousand, n = 1) and rutile (3.3. to 3.6 parts per thousand, n = 3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700-750-degrees-C. Minimum pressures are 31-32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc + kyanite = pyrope + coesite + H2O, the a(H2O) must be reduced to 0.4-0.75 at 700 750-degrees-C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X (CO2) > 0.02 (T = 750-degrees-C; P = 30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are approximately 680-degrees-C/30 kb at a(H2O) = 1.0 and are calculated to be approximately 70-degrees-C higher at a(H2O) = 0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34 +/- 2 kb, 700-750-degrees-C and 0.4-0.75. The oxygen isotope fractionation between quartz (deltaO-18 = 11.6%.) and garnet (deltaO-18 = 8.7 parts per thousand) in the surrounding orthognesiss is identical to that in the coesite-bearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (deltaD(smow) = -27 to -32 parts per thousand), on secondary talc and chlorite after pyrope (deltaD = - 39 to - 44 parts per thousand) and on the surrounding biotite (deltaD = -64 parts per thousand) and phengite (deltaD = -44 parts per thousand) gneiss. All phases appear to be in near-equilibrium. The very high deltaD values for the primary hydrous phases is consistent with an initial oceanic-derived/connate fluid source. The fluid source for the retrograde talc + chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar deltaD, but dissimilar deltaO-18 values of the coesite-bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.
Resumo:
Iowa has more than 13,000 miles of portland cement concrete (PCC) pavement. Some pavements have performed well for over 50 years, while others have been removed or overlaid due to the premature deterioration of joints and cracks. Some of the premature deterioration is classical D-cracking, which is attributed to a critically saturated aggregate pore system (freeze-thaw damage). However, some of the premature deterioration is related to adverse chemical reactivity involving carbonate coarse aggregate. The objective of this paper is to demonstrate the value of a chemical analysis of carbonate aggregate using X-ray equipment to identify good or poor quality. At least 1.5% dolomite is necessary in a carbonate aggregate to produce a discernible dolomite peak. The shift of the maximum-intensity X-ray diffraction dolomite d-spacing can be used to predict poor performance of a carbonate aggregate in PCC. A limestone aggregate with a low percentage of strontium (less than 0.013) and phosphorus (less than 0.010) would be expected to give good performance in PCC pavement. Poor performance in PCC pavement is expected from limestone aggregates with higher percentages (above 0.05) of strontium.
Resumo:
Regulator of G-protein signalling (RGS) proteins negatively regulate heterotrimeric G-protein signalling through their conserved RGS domains. RGS domains act as GTPase-activating proteins, accelerating the GTP hydrolysis rate of the activated form of Gα-subunits. Although omnipresent in eukaryotes, RGS proteins have not been adequately analysed in non-mammalian organisms. The Drosophila melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization of the complex of the two proteins using PEG 4000 as a crystallizing agent and preliminary X-ray crystallographic analysis are reported. Diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source.
Resumo:
The two goals of this project stated in the Proposal were: (1) study lime diffusion in clayey soils, and (2) find the role of MgO in soil-dolomitic lime stabilization. Because of the practice significance of these goals we temporarily overstaffed this project, giving somewhat a "crash" program. As a result, proposed work was finished up early (as were the funds), and more important, some of the findings were early enough and of sufficient merit to put into field trials in the Fall of 1964. The work now being completed and the funds all being expended, this Final Report is therefore submitted before the anticipated project termination date.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
In this article the main possibilities of single crystal and powder diffraction analysis using conventional laboratory x-ray sources are introduced. Several examples of applications with different solid samples and in different fields of applications are shown illustrating the multidisciplinary capabilities of both techniques.