983 resultados para SEROTONIN RECEPTOR
Resumo:
The reason why a sustained high concentration of insulin induces laminitis in horses remains unclear. Cell proliferation occurs in the lamellae during insulin-induced laminitis and in other species high concentrations of insulin can activate receptors for the powerful cell mitogen, insulin-like growth factor (IGF)-1. The first aim of this study was to determine if IGF-1 receptors (IGF-1R) are activated in the hoof during insulin-induced laminitis. Gene expression for IGF-1R and the insulin receptor (InsR) was measured using qRT-PCR, in lamellar tissue from control horses and from horses undergoing a prolonged euglycaemic, hyperinsulinaemic clamp (p-EHC), during the mid-developmental (24 h) and acute (46 h) phases of insulin-induced laminitis. Gene expression for both receptors was decreased 13–32-fold (P < 0.05) at both time-points in the insulin-treated horses. A second aim was to determine if the down-regulation of the receptor genes could be accounted for by an increase in circulating IGF-1. Serum IGF-1 was measured at 0, 10, 25 and 46 h post-treatment in horses given a p-EHC for approximately 46 h, and in matched controls administered a balanced, electrolyte solution. There was no increase in serum IGF-1 concentrations during the p-EHC, consistent with down-regulation of both receptors by insulin. Stimulation of the IGF-1R by insulin may lead to inappropriate lamellar epidermal cell proliferation and lamellar weakening, a potential mechanism for hyperinsulinaemic laminitis. Targeting this receptor may provide insights into the pathogenesis or identify a novel therapy for hyperinsulinaemic laminitis.
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.
Resumo:
Migraine is a common neurovascular brain disorder characterised by recurrent attacks of severe headache that may be accompanied by various neurological symptoms. Migraine is thought to result from activation of the trigeminovascular system followed by vasodilation of pain-producing intracranial blood vessels and activation of second-order sensory neurons in the trigeminal nucleus caudalis. Calcitonin gene-related peptide (CGRP) is a mediator of neurogenic inflammation and the most powerful vasodilating neuropeptide, and has been implicated in migraine pathophysiology. Consequently, genes involved in CGRP synthesis or CGRP receptor genes may play a role in migraine and/or increase susceptibility. This study investigates whether variants in the gene that encodes CGRP, calcitonin-related polypeptide alpha (CALCA) or in the gene that encodes a component of its receptor, receptor activity modifying protein 1 (RAMP1), are associated with migraine pathogenesis and susceptibility. The single nucleotide polymorphisms (SNPs) rs3781719 and rs145837941 in the CALCA gene, and rs3754701 and rs7590387 at the RAMP1 locus, were analysed in an Australian Caucasian population of migraineurs and matched controls. Although we find no significant association of any of the SNPs tested with migraine overall, we detected a nominally significant association (p = 0.031) of the RAMP1 rs3754701 variant in male migraine subjects, although this is non-significant after Bonferroni correction for multiple testing.
Resumo:
Migraine is a painful and debilitating, neurovascular disease. Current migraine head pain treatments work with differing efficacies in migraineurs. The opioid system plays an important role in diverse biological functions including analgesia, drug response and pain reduction. The A118G single nucleotide polymorphism (SNP) in exon 1 of the μ-opioid receptor gene (OPRM1) has been associated with elevated pain responses and decreased pain threshold in a variety of populations. The aim of the current preliminary study was to test whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. This was a preliminary study to determine whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. A total of 153 chronic migraine with aura sufferers were assessed for migraine head pain using the Migraine Disability Assessment Score instrument and classified into high and low pain severity groups. DNA was extracted and genotypes obtained for the A118G SNP. Logistic regression analysis adjusting for age effects showed the A118G SNP of the OPRM1 gene to be significantly associated with migraine pain severity in the test population (P = 0.0037). In particular, G118 allele carriers were more likely to be high pain sufferers compared to homozygous carriers of the A118 allele (OR = 3.125, 95 % CI = 1.41, 6.93, P = 0.0037). These findings suggest that A118G genotypes of the OPRM1 gene may influence migraine-associated head pain in females. Further investigations are required to fully understand the effect of this gene variant on migraine head pain including studies in males and in different migraine subtypes, as well as in response to head pain medication.
Resumo:
Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4) of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor for glutamate was tested in migraineurs with and without aura (MA and MO) and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450) and GRIA3 (rs3761555) genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively), but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.
Resumo:
Multiple sclerosis (MS) is a serious cause of neurological disability among young adults. The clinical course remains difficult to predict, and the pathogenesis of the disease is still modestly understood. Autoimmunity is thought to be a key aspect of the disease, with autoreactive T cells thought to mediate central nervous system (CNS) inflammation to some extent. Toll-like receptors are known to mediate cellular recognition of pathogens by way of patterns of molecular presentation. Toll-like receptor 3 is coded by the gene TLR3 and is recognized as an important factor in virus recognition and is known to be involved in the expression of neuroprotective mediators. We set out to investigate two variations within the TLR3 gene, an 8 bp insertion-deletion \[-/A](8) and a single base-pair variation C1236T, in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We used capillary gel electrophoresis and TaqMan genotyping assay techniques to resolve genotypes for each marker, respectively. Our work found no significant difference between frequencies for TLR3 \[-/A](8) by genotype (chi(2)=1.03, p=0.60) or allele (chi(2)=1.09, p=0.30). Similarly, we found no evidence for the association of TLR3 C1236T by genotype (chi(2)=0.35, p=0.84) or allele frequency (chi(2)=0.31, p=0.58). This work reveals no evidence to suggest that these markers are associated with MS in the tested population. Although the role of TLR3 and the wider toll-like receptor family remain significant in neurological and CNS inflammatory disorders, our current work does not support a role for the two tested variants in this gene with regard to MS susceptibility.
Resumo:
Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS pathogenesis. The Protein tyrosine phosphatase receptor type C gene (PTPRC) encodes the T-cell receptor CD45. Variations within PTPRC have been previously associated with diseases of autoimmune origin such as type 1 diabetes mellitus and Graves' disease. We set out to investigate two variants within the PTPRC gene, C77G and C772T in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We employed high resolution melt analysis (HRM) and restriction length polymorphism (RFLP) techniques to determine genotypic and allelic frequencies. Our study found no significant difference between frequencies for PTPRC C77G by either genotype (Χ2 = 0.65, P = 0.72) or allele (Χ2 = 0.48, P = 0.49). Similarly, we did not find evidence to suggest an association between PTPRC C772T by genotype (Χ2 = 1.06, P = 0.59) or allele (Χ2 = 0.20, P = 0.66). Linkage disequilibrium (LD) analysis showed strong linkage disequilibrium between the two tested markers (D' = 0.9970, SD = 0.0385). This study reveals no evidence to suggest that these markers are associated with MS in the tested Australian Caucasian population. Although the PTPRC gene has a significant role in regulating CD4+ and CD8+ autoreactive T-cells, interferon-beta responsiveness, and potentially other important processes, our study does not support a role for the two tested variants of this gene in MS susceptibility in the Australian population.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Our laboratory has previously found that anti-mitogenic nuclear receptor mRNA is elevated in late stage tumours and this study was performed to scrutinize the possibility of cancer-stroma crosstalk using hormone signaling in these tissues. RNA levels in stromal tissue were examined for the estrogen α, estrogen β, androgen, progesterone and glucocorticoid nuclear receptors by a semi-quantitative PCR. Significant differences in expression between the cancer stroma and control tissue were seen, analyzing for both cancer grade and estrogen receptor status. Stroma and control tissue were significantly different for the progesterone and glucocorticoid nuclear receptors (p = 5.908 × 10−7 and 2.761 × 10−5, respectively). Glucocorticoid receptor also showed a significant increase to mRNA levels in the stroma of estrogen receptor negative tumours (p = 5.85 × 10−5). By contrast, the estrogen receptors α and β, those most closely associated with breast tissue growth, showed no significant change in mRNA (p = 0.372 and 0.655, respectively). Androgen receptor mRNA also remained unaffected (p = 0.174).
Resumo:
Migraine is a common idiopathic primary headache disorder with significant mental, physical and social health implications. Accompanying an intense unilateral pulsating head pain other characteristic migraine symptoms include nausea, emesis, phonophobia, photophobia and in approximately 20-30% of migraine cases, neurologic disturbances associated with the aura phase. Although selective serotonin (5-HT) receptor agonists (i.e., 5-HT(1B/1D)) are successful in alleviating migrainous symptoms in < or = 70% of known sufferers, for the remaining 30%, additional migraine abortive medications remain unsuccessful, not tested or yet to be identified. Genetic characterization of the migrainous disorder is making steady progress with an increasing number of genomic susceptibility loci now identified on chromosomes 1q, 4q, 5q, 6p, 11q, 14q, 15q, 17p, 18q, 19p and Xq. The 4q, 5q, 17p and 18q loci involve endophenotypic susceptibility regions for various migrainous symptoms. In an effort to develop individualized pharmacotherapeutics, the identification of these migraine endophenotypic loci may well be the catalyst needed to aid in this goal. In this review the authors discuss the present treatment of migraine, known genomic susceptibility regions and results from migraine (genetic) association studies. The authors also discuss pharmacogenomic considerations for more individualized migraine prophylactic treatments.
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.
Resumo:
Background We have previously reported an association between the estrogen receptor 1 (ESR1) gene exon 8 G594A polymorphism and migraine susceptibility in two independent Australian cohorts. In this paper we report results of analysis of two further single nucleotide polymorphisms (SNPs) in the ESR1 gene in the same study group, the T/C Pvu II SNP in intron 1 and the C325G SNP in exon 4, as well as results of linkage disequilibrium (LD) analysis on these markers. Methods We investigated these variants by case-control association analysis in a cohort of 240 migraineurs and 240 matched controls. The SNPs were genotyped using specific restriction enzyme assays. Results were analysed using contingency table methods incorporating the chi-squared statistic. LD results are presented as D' statistics with associated P values. Results We found no evidence for association of the Pvu II T/C polymorphism and the C325G polymorphism and migraine susceptibility and no evidence for LD between these two SNPs and the previously implicated exon 8 G594A marker. Conclusion We have found no role for the polymorphisms in intron 1 and exon 4 with migraine susceptibility. To further investigate our previously implicated exon 8 marker, we suggest the need for studies with a high density of polymorphisms be undertaken, with particular focus on markers in LD with the exon 8 marker.
Resumo:
Migraine is a common neurological condition with a complex mode of inheritance. Steroid hormones have long been implicated in migraine, although their role remains unclear. Our investigation considered that genes involved in hormonal pathways may play a role in migraine susceptibility. We therefore investigated the androgen receptor (AR) CAG repeat, and the progesterone receptor (PR) PROGINS insert by cross-sectional association analysis. The results showed no association with the AR CAG repeat in our study group of 275 migraineurs and 275 unrelated controls. Results of the PR PROGINS analysis showed a significant difference in the same cohort, and in an independent follow-up study population of 300 migraineurs and 300 unrelated controls. Analysis of the genotypic risk groups of both populations together indicated that individuals who carried the PROGINS insert were 1.8 times more likely to suffer migraine. Interaction analysis of the PROGINS variant with our previously reported associated ESR1 594A variant showed that individuals who possessed at least one copy of both risk alleles were 3.2 times more likely to suffer migraine. Hence, variants of these steroid hormone receptor genes appear to act synergistically to increase the risk of migraine by a factor of three.
Resumo:
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population. One hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p(Gen) = 0.016) and interestingly, a stronger difference for the allelic frequency (p(All) = 0.0072). The Apa I alleles were also found to be associated with MS (p(All) = 0.04) but genotype frequencies were not significantly different from controls (p(Gen) = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing the risk of developing multiple sclerosis, particularly the progressive clinical subtypes of MS.
Resumo:
Adenosine is an important cardioprotective agent that works via several adenosine receptor (ADOR) subtypes to regulate cardiovascular activity. It is well established that functional responses to adenosine decline with age. What is unclear, though, is whether these changes occur at the receptor, second messenger or translational level. In this study we determined the effect of age on cardiac adenosine receptor expression using the housekeeping gene 18S rRNA versus the adenosine A2B receptor gene as internal controls. Absolute quantification showed that no age-related changes occurred in the expression of 18S rRNA or adenosine A2B receptor internal control genes. Subsequently, relative analysis of the adenosine receptor subtypes using 18S rRNA found a significant age-related reduction in the expression of the adenosine A1 receptor (5.5-fold), with no changes in the expression of the adenosine A2A, A2B and A3 receptors. When using the expression of the adenosine A2B receptor as the internal control gene, a significant down regulation of both the adenosine A1 (5.4-fold) and A2A (2.2-fold) receptors with no change in the expression of adenosine A3 receptor was found. Therefore, the high level of expression of the 18S rRNA housekeeping gene was found to mask a significant change in expression of the adenosine A2A receptor with age. Ultimately, these findings show an age-related reduction in adenosine A1 and A2A receptor expression in rat heart.