964 resultados para SERINE DIGESTIVE ENZYMES
Resumo:
Enzymes are crucial for the metabolism of macromolecular substrates. In the great majority of cells, most enzymes are constitutive. Nevertheless, inducible enzymes can predominate, determining specialized cell functions. Within this context, histochemistry/immunohistochemistry and biochemistry were used to investigate expression of peroxidase and reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-oxidase, as well as the expression and activity of cathepsin D and acid phosphatase, in trophoblast cells within the endotheliochorial labyrinth and marginal hematoma of the term cat placenta. In the marginal hematoma, elevated Cathepsin D expression and activity was accompanied by erythrophagocytosis. In contrast, acid phosphatase activity was much more intense in the labyrinth, where metabolic exchanges occur. Peroxidase and NAD(P)H-oxidase were predominantly active in trophoblast cells within endosomal vesicles of different placental compartments, indicating that, although reactive oxygen species might participate in endosomal/lysosomal processes, they are not territorially specific or functional markers. These findings highlight differential characteristics of cathepsin D and acid phosphatase activity within each placental compartment, thereby contributing to the comprehension of the territorial role played by the placenta and facilitating future metabolic studies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Trypsinogen (TRY), the precursor to the serine protease trypsin, is found in the pancreas and mediates digestive proteolysis in the small intestine. Differential display of cDNAs expressed by human colorectal tumor tissues compared with adjacent normal colonic mucosa identified an isoform of TRY (TRY2) up-regulated in colorectal cancers. Northern blot analysis of RNA isolated from a series of 28 malignant colon tumors and corresponding normal mucosa showed that TRY transcripts were up-regulated 2- to 33-fold in 29% of tumors. Further, TRY mRNA was expressed in 6 colorectal cancer cell lines, with highest levels detected in the metastatic tumor lines SW620 and HT29. Immunostaining for TRY protein expression showed intense immunoreactivity in the supranuclear cytoplasm of colon tumors in 16% of tissue specimens. To evaluate the relative contributions of 2 isoforms of TRY, TRY1 and TRY2, to total TRY mRNA expression, a semiquantitative multiplex RT-PCR assay was developed. TRY2 mRNA was detected in all 6 colorectal tumor cell lines, whereas TRY1 mRNA was expressed only in the metastatic tumor lines, showing that the high levels of TRY expression in the metastatic tumor lines are likely due to up-regulation of TRY1. Evaluation of TRY1 and TRY2 mRNA expression by multiplex RT-PCR in a series of 20 colon tumor tissues representative of the range of tumor progression showed that TRY2 mRNA was expressed much more commonly than TRY1 mRNA in normal mucosa (26% vs. 6%) as well as in primary tumor tissues (65% vs. 15%). These data demonstrate that TRY2 is the dominant TRY in colon tissue and suggest that up-regulation of TRY1 expression in colon tumors may be associated with a metastatic phenotype. (C) 2001 Wiley-Liss, Inc.
Resumo:
The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
Tamoxifen is a major drug used for adjuvant chemotherapy of breast cancer; however, its use has been associated with a small but significant increase in risk of endometrial cancer. In rats, tamoxifen is a hepatocarcinogen, and DNA adducts have been observed in both rat and human tissues. Tamoxifen has been shown previously to be metabolized to reactive products that have the potential to form protein and DNA adducts. Previous studies have suggested a role for P450 3A4 in protein adduct formation in human liver microsomes, via a catechol intermediate; however, no clear correlation was seen between P450 3A4 content of human liver microsomes and adduct formation. In the present study, we investigated the P450 forms responsible for covalent drug-protein adduct formation and the possibility that covalent adduct formation might occur via alternative pathways to catechol formation. Recombinant P450 3A4 catalyzed adduct formation, and this correlated with the level of uncoupling in the P450 incubation, consistent with a role of reactive oxygen species in potentiating adduct formation after enzymatic formation of the catechol metabolite. Whereas P450s 1AI, 2D6, and 3A5 generated catechol metabolite, no covalent adduct formation was observed with these forms. By contrast, P450 2136, 2C19, and rat liver microsomes catalyzed drug-protein adduct formation but not catechol formation. Drug protein adducts formed specifically with P450 3A4 in incubations using membranes isolated from bacteria expressing P450 3A4 and reductase, as well as in reconstitutions of purified 3A4, suggesting that the electrophilic species reacted preferentially with the P450 enzymes concerned.
Resumo:
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
Resumo:
Our groups have had a long-term interest in utilizing bacterial systems in the characterization of bioactivation and detoxication reactions catalyzed by cytochrome P450 (P450) and glutathione transferase (GST) enzymes. Bacterial systems remain the first choice for initial screens with new chemicals and have advantages, including high-throughput capability. Most human P450s of interest in toxicology have been readily expressed in Escherichia coli with only minor sequence modification. These enzymes can be readily purified and used in assays of activation of chemicals. Bicistronic systems have been developed in order to provide the auxiliary NADPH-P450 reductase. Alternative systems involve these enzymes expressed together within bacteria. In one approach, a lac selection system is used with E. coli and has been applied to the characterization of inhibitors of P450s 1A2 and 1131, as well as in basic studies involving random mutagenesis. Another approach utilizes induction of the SOS (umu) response in Salmonella typhimurium, and systems have now been developed with human P450s 1A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4, which have been used to report responses from heterocyclic amines. S. typhimurium his reporter systems have also been used with GSTs, first to demonstrate the role of rat GST 5-5 in the activation of dihalomethanes. These systems have been used to compare these GSTs with regard to activation of dihaloalkanes and potential toxicity. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
1. Sulphotransferases are a superfamily of enzymes involved in both detoxification and bioactivation of endogenous and exogenous compounds. The arylsulphotransferase SULT1A1 has been implicated in a decreased activity and thermostability when the wild-type arginine at position 213 of the coding sequence is substituted by a histidine. SULT1A1 is the isoform primarily associated with the conversion of dietary N -OH arylamines to DNA binding adducts and is therefore of interest to determine whether this polymorphism is linked to colorectal cancer. 2. Genotyping, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, was performed using DNA samples of healthy control subjects (n = 402) and patients with histologically proven colorectal cancer (n = 383). Both control and test populations possessed similar frequencies for the mutant allele (32.1 and 31%, respectively; P = 0.935). Results were not altered when age and gender were considered as potential confounders in a logistic regression analysis. 3. Examination of the sulphonating ability of the two allozymes with respect to the substrates p -nitrophenol and paracetamol showed that the affinity and rate of sulphonation was unaffected by substitution of arginine to histidine at position 213 of the amino acid sequence. 4. From this study, we conclude that the SULT1A1 R213H polymorphism is not linked with colorectal cancer in this elderly Australian population.
Resumo:
Enzymic catalysis proceeds via intermediates formed in the course of substrate conversion. Here, we directly detect key intermediates in thiamin diphosphate (ThDP)-dependent enzymes during catalysis using H-1 NMR spectroscopy. The quantitative analysis of the relative intermediate concentrations allows the determination of the microscopic rate constants of individual catalytic steps. As demonstrated for pyruvate decarboxylase (PDC), this method, in combination with site-directed mutagenesis, enables the assignment of individual side chains to single steps in catalysis. In PDC, two independent proton relay systems and the stereochemical control of the enzymic environment account for proficient catalysis proceeding via intermediates at carbon 2 of the enzyme-bound cofactor. The application of this method to other ThDP-dependent enzymes provides insight into their specific chemical pathways.
Resumo:
Acute physical exercise is associated with increased oxygen consumption, which could result in an increased formation of reactive oxygen species (ROS). ROS can react with several organic structures, namely DNA, causing strand breaks and a variety of modified bases in DNA. Physical exercise training seems to decrease the incidence of oxidative stress-associated diseases, and is considered as a key component of a healthy lifestyle. This is a result of exercise-induced adaptation, which has been associated with the possible increase in antioxidant activity and in oxidative damage repair enzymes, leading to an improved physiological function and enhanced resistance to oxidative stress (Radak et al. 2008). Human 8-oxoguanine DNA glycosylase 1 (hOGG1) is involved in the base excision repair (BER) pathway and encodes an enzyme responsible for removing the most common product of oxidative damage in DNA, 8-hydroxyguanine (8-OH-G). The genetic polymorphism of hOGG1 at codon 326 results in a serine (Ser) to cysteine (Cys) amino acid substitution (Ser326Cys). It has been suggested that the carriers of at least one hOGG1Cys variant allele exhibit lower 8-OH-G excision activity than the wild-type (Wilson et al. 2011). The aim of this study was to investigate the possible influence of hOGG1 Ser326Cys polymorphism on DNA damage and repair activity in response to 16 weeks of combined physical exercise training, in thirty healthy Caucasian men. Comet assay was carried out using peripheral blood lymphocytes and enabled the evaluation of DNA damage, both strand breaks and FPG-sensitive sites, and DNA repair activity. Genotypes were determined by PCR-RFLP analysis. The subjects with Ser/Ser genotype were considered as wild-type group (n=20), Ser/Cys and Cys/Cys genotype were analyzed together as mutant group (n=10). Regarding differences between pre and post-training in the wild-type group, the results showed a significant decrease in DNA strand breaks (DNA SBs) (p=0.002) and also in FPG-sensitive sites (p=0.017). No significant differences were observed in weight (p=0.389) and in lipid peroxidation (MDA) (p=0.102). A significant increase in total antioxidant capacity (evaluated by ABTS) was observed (p=0.010). Regarding mutant group, the results showed a significant decrease in DNA SBs (p=0.008) and in weight (p=0.028). No significant differences were observed in FPG-sensitive sites (p=0.916), in ABTS (p=0.074) and in MDA (p=0.086). No significant changes in DNA repair activity were observed in both genotype groups. This preliminary study suggests the possibility of different responses in DNA damage to physical exercise training, considering the hOGG1 Ser326Cys polymorphism.
Resumo:
Tese de Doutoramento, Biologia (Biologia Celular e Molecular), 18 de Novembro de 2013, Universidade dos Açores.
Resumo:
Metals are ubiquitous in the environment and accumulate in aquatic organisms and are known for their ability to enhance the production of reactive oxygen species (ROS). In aquatic species, oxidative stress mechanisms have been studied by measuring antioxidant enzyme activities and oxidative damages in tissues. The aim of this study was to apply and validate a set of oxidative stress biomarkers and correlate responses with metal contents in tissues of common octopus (Octopus vulgaris). Antioxidant enzyme activity (catalase — CAT, superoxide dismutase — SOD and glutathione S-transferases — GST), oxidative damages (lipid peroxidation — LPO and protein carbonyl content — PCO) andmetal content (Cu, Zn, Pb, Cd and As) in the digestive gland and armof octopus, collected in the NWPortuguese coast in different periods, were assessed after capture and after 14 days in captivity. CAT and SOD activitieswere highly responsive to fluctuations inmetal concentrations and able to reduce oxidative damage, LPO and PCO in the digestive gland. CAT activity was also positively correlated with SOD and GST activities, which emphasizes that the three enzymes respond in a coordinated way to metal induced oxidative stress. Our results validate the use of oxidative stress biomarkers to assess metal pollution effects in this ecological and commercial relevant species.Moreover, octopus seems to have the ability to control oxidative damage by triggering an antioxidant enzyme coordinated response in the digestive gland.
Resumo:
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.