370 resultados para SCYPHOZOAN AURELIA-LABIATA
Resumo:
Fil: Di Berardino, María Aurelia. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Fil: Pepe de Suárez, Luz Enriqueta Aurelia. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
En las últimas décadas la reflexión filosófica sobre el conocimiento y la ciencia ha dejado un lugar cada vez mayor al análisis de las prácticas cognitivas y no sólo a su producto final, sin por ello minimizar la rigurosidad del estudio metodológico de las teorías. De acuerdo con Pérez Ransánz y Velasco Gómez (2012: 14-22) dicha redirección en las discusiones está en clara sintonía con el planteo de los pragmatistas clásicos, en especial con la filosofía de John Dewey y sus análisis sobre el conocimiento y la teoría de la investigación. Sin lugar a dudas, las observaciones de Pérez Ransánz y Velasco Gómez marcan en buena medida el espíritu de este trabajo, cuyo tema central es la relación entre conocimiento y valoración, prestando especial atención al caso de la ciencia, y todo ello desde el marco teórico del ya mencionado Dewey. La tesina se concentra en dos temas principales, estrechamente vinculados a la teoría del conocimiento deweyana. El primero es el concepto de experiencia, caro a toda la tradición pragmatista; el segundo es la concepción deweyana de investigación, presentada fundamentalmente como determinación progresiva de situaciones inicialmente indeterminadas y problemáticas para ese sujeto y su transacción con el medio. Presentados los puntos anteriores, se hará hincapié en un punto clave: la caracterización del investigador como práctico y la ineludible presencia de la deliberación y la valoración en su actividad. El objetivo será pues el de reconstruir los argumentos que sostienen una tesis fundamental de Dewey: que a todo juicio de hecho le corresponde un juicio de valor o que en todo ítem de conocimiento se contiene una pauta de acción respecto de la situación que provoca el juicio, tesis que en gran medida evidencia el espíritu pragmatista de Dewey. Luego de analizar el marco teórico deweyano se retomarán las mencionadas consideraciones respecto de la apertura del análisis filosófico con relación al conocimiento y la ciencia, enfatizando nuestro interés por la práctica científica. Así, abordaremos el concepto de racionalidad axiológica presentado por Javier Echeverría en Filosofía de la ciencia (1995) y Ciencia y valores (2002). En estos textos Echeverría expone los fundamentos filosóficos de una nueva concepción de la racionalidad, distinguida por la consideración de sus aspectos axiológicos / valorativos. El objetivo central de la tesina es ensayar una interpretación por la cual la estructura teórica de Dewey, apoyada en su concepción de la experiencia como transacción y de la investigación con su intrínseca dimensión práctica es un marco promisorio y fructífero para repensar el modelo de racionalidad, un modelo que incluya aspectos valorativos y que permita la pregunta por la consideración de los valores en ciencia. Esta perspectiva, de aceptarse, reivindica el lugar del pragmatismo de Dewey en el debate contemporáneo, en tanto y en cuanto su filosofía permite fundamentar la relación entre investigación, conocimiento y valoración mediante un tratamiento conceptualmente riguroso e innovador que se retrotrae hasta el núcleo mismo de su teoría de la experiencia
Resumo:
El objetivo de esta tesis es ofrecer una reconstrucción de la teoría de la investigación de John Dewey, prestando atención a sus antecedentes en los escritos del padre del pragmatismo, Charles Sanders Peirce, y a algunas derivaciones de tal teoría en la teoría de la argumentación contemporánea y en los estudios sociales de la ciencia. La misma está dividida en tres partes dedicadas a (I) explorar algunos antecedentes de la teoría de la investigación de Dewey, (II) desarrollar y analizar críticamente los aspectos centrales de tal teoría y, por último, (III) seguir la pista de algunas de sus derivaciones. El punto de partida es el análisis de la concepción de la lógica de la investigación de Peirce, tal como éste la fuera construyendo a partir de su crítica a la filosofía moderna. Ofrecemos una reconstrucción de las ideas de Peirce que permite dar cuenta de que, pese a las importantes diferencias entre las ideas de Peirce y Dewey, los desarrollos de este último pueden ser considerados como una prosecución, en nuevas y profundas direcciones, de algunas de las ideas más destacadas del primero y que constituyen, por ello, una lectura posible de algunos de los escritos más destacados de Peirce. En la segunda parte, la central de esta tesis, se aborda la teoría de la investigación de Dewey. En este marco, se reconstruye la teoría de la experiencia de Dewey, que constituye, como se argumenta, un verdadero punto de partida para la teoría de la investigación. Se argumenta que la teoría de la experiencia de Dewey puede ser considerada como un análisis de las consecuencias para la filosofía de algunos de los resultados más influyentes en el campo de la biología, la psicología y la antropología social en relación con la comprensión de los seres humanos. Se reconstruye también la teoría de la investigación que, al ser comprendida como una forma de la experiencia, permite dar cuenta del carácter mediador y transformacional del conocimiento. Se analizan, asimismo, las consecuencias que para la comprensión de la lógica se siguen de dicha concepción y se argumenta que, pese a lo que Peirce y algunos intérpretes contemporáneos sostienen, la lógica de Dewey puede ser considerada una verdadera lógica. Además, en esta segunda parte se analiza la concepción deweyana de la valoración y se reconstruye una perspectiva acerca de la interdependencia del conocimiento y los valores. Asimismo, se argumenta que, y contra lo que las críticas de Horkheimer y Adorno sugieren, la teoría de la valoración de Dewey tiene un potencial crítico que permite plantear y abordar el problema de los fines de la acción y, en especial, los de esa acción cognitiva a la que llamamos ciencia. En la tercera y última parte de esta tesis se abordan algunas de las derivaciones de la teoría de la investigación de Dewey. En primer lugar, se exploran las relaciones entre la propuesta de Dewey y la de uno de los más destacados representantes de la teoría de la argumentación contemporánea, a saber, Stephen Toulmin. Se muestra que en la obra de este último puede identificarse una dimensión pragmatista y deweyana. En segundo lugar, se aborda la cuestión de la relación entre la teoría de la investigación de Dewey y el giro hacia las prácticas de los estudios sociales de la ciencia. En particular, se analizan algunos aspectos de la obra de Bruno Latour y de la de Karin Knorr Cetina, mostrando las profundas e interesantes continuidades que suponen con el trabajo de Dewey. Además, se aborda un problema fuertemente discutido en el ámbito de la sociología del conocimiento, a saber, el problema de la reflexividad de los estudios de la ciencia, con el objetivo de ofrecer una mirada deweyana sobre tal cuestión, lo que permitirá sostener una interpretación de la filosofía del conocimiento de Dewey como filosofía política de la ciencia
Resumo:
Fil: Pepe de Suárez, Luz Enriqueta Aurelia. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Benthic foraminifers from Ocean Drilling Program Leg 199 Holes 1215A, 1220B, and 1221C were examined across the Paleocene/Eocene boundary. Assemblages were studied in 240 samples. The benthic foraminiferal extinction event that correlates with the Paleocene/Eocene epoch boundary was recognized at these sites. Benthic assemblages before the event are characterized by high diversity, but those after the event are low in diversity. An assemblage of agglutinated foraminifers without carbonate cement was recognized at Sites 1220 and 1221. These assemblages were typically found after the event. The discovery of such agglutinated assemblages has never been reported before at this boundary.
Resumo:
La novela policial argentina contemporánea, entendida como un género en disolución de sus propias fronteras, a medida que se reinventa para persistir, ostenta distintas visiones de lo urbano como un componente estructural siempre presente. En este sentido, analizaremos el funcionamiento del espacio de la ciudad porteña como una zona fronteriza entre un mundo ordenado, ubicado en la superficie y otra zona paralela de confusión, inversión y transgresión, descripta a partir de la noción de catábasis. Para este abordaje proponemos un corpus integrado por Ceviche de Federico Levin, El síndrome de Rasputín y Los bailarines del fin del mundo de Ricardo Romero publicados en la colección Negro Absoluto. Enfocaremos esta lectura apoyadas principalmente en los aportes de Bajtin Deleuze y De Certeau, sin descuidar la fuerza de la tradición mítica reinterpretada
Resumo:
Plankton pump samples and plankton tows (size fractions between 0.04 mm and 1.01 mm) from the eastern North Atlantic Ocean contain the following shell- and skeleton-producing planktonic and nektonic organisms, which can be fossilized in the sediments: diatoms, radiolarians, foraminifers, pteropods, heteropods, larvae of benthic gastropods and bivalves, ostracods, and fish. The abundance of these components has been mapped quantitatively in the eastern North Atlantic surface waters in October - December 1971. More ash (after ignition of the organic matter, consisting mostly of these components) per cubic meter of water is found close to land masses (continents and islands) and above shallow submarine elevations than in the open ocean. Preferred biotops of planktonic diatoms in the region described are temperate shallow water and tropical coastal upwelling areas. Radiolarians rarely occur close to the continent, but are abundant in pelagic warm water masses, even near islands. Foraminifers are similar to the radiolarians, rarer in the coastal water mass of the continent than in the open ocean or off oceanic islands. Their abundance is highest outside the upwelling area off NW Africa. Molluscs generally outnumber planktonic foraminifers, implying that the carbonate cycle of the ocean might be influenced considerably by these animals. The molluscs include heteropods, pteropods, and larvae of benthic bivalves and gastropods. Larvae of benthic molluscs occur more frequently close to continental and island margins and above submarine shoals (in this case mostly guyots) than in the open ocean. Their size increases, but they decrease in number with increasing distance from their area of origin. Ostracods and fish have only been found in small numbers concentrated off NW Africa. All of the above-mentioned components occur in higher abundances in the surface water than in subsurface waters. They are closely related to the hydrography of the sampled water masses (here defined through temperature measurements). Relatively warm water masses of the southeastern branches of the Gulf Stream system transport subtropical and southern temperate species to the Bay of Biscay, relatively cool water masses of the Portugal and Canary Currents carry transitional faunal elements along the NW African coast southwards to tropical regions. These mix in the northwest African upwelling area with tropical faunal elements which are generally assumed to live in the subsurface water masses and which probably have been transported northwards to this area by a subsurface counter current. The faunas typical for tropical surface water masses are not only reduced due to the tongue of cool water extending southwards along the coast, but they are also removed from the coastal zone by the upwelling subsurface water masses carrying their own shell and skeleton assemblages. Tropical water masses contain much more shelland skeleton-producing plankters than subtropical and temperate ones. The climatic conditions found at different latitudes control the development and intensity of a separate continental coastal water mass with its own plankton assemblages. Extent of this water mass and steepness of gradients between the pelagic and coastal environment limit the occurrence of pelagic plankton close to the continental coast. A similar water mass in only weakly developed off oceanic islands.
Resumo:
The dataset is based on samples collected in the summer of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 47 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The sampling area was extended to the Western-South area off the Black Sea coast from Kaliakra cape toward the Bosforous. Samples were collected along four transects. The whole dataset is composed of 17 samples (from 10 stations) with data of mesozooplankton species composition abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. These data are organized in the "Control of eutrophication, hazardous substances and related measures for rehabilitating the Black Sea ecosystem: Phase 2: Leg I: PIMS 3065". Data Report is not published. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The dataset is based on samples collected in the summer of 1999 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 59 samples (from 24 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The "15BO1997001" dataset is based on samples collected in the spring of 1997. The whole dataset is composed of 66 samples (from 27 stations of National Monitoring Sampling Grid) with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The "15BO1997001" dataset is based on samples collected in the spring of 1997. The whole dataset is composed of 66 samples (from 27 stations of National Monitoring Sampling Grid) with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).