942 resultados para SAW gas sensors
Resumo:
Here we report on the synthesis of caesium doped graphene oxide (GO-Cs) and its application to the development of a novel NO2 gas sensor. The GO, synthesized by oxidation of graphite through chemical treatment, was doped with Cs by thermal solid-state reaction. The samples, dispersed in DI water by sonication, have been drop-casted on standard interdigitated Pt electrodes. The response of both pristine and Cs doped GO to NO2 at room temperature is studied by varying the gas concentration. The developed GO-Cs sensor shows a higher response to NO2 than the pristine GO based sensor due to the oxygen functional groups. The detection limit measured with GO-Cs sensor is ≈90 ppb.
Resumo:
We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.
Resumo:
Catalytic probes are used for plasma diagnostics in order to quantify the density of neutral atoms. The probe response primarily depends on the probe material and its surface morphology. Here we report on the design, operation and modelling of the response of niobium pentoxide sensors with a flat and nanowire (NW) surfaces. These sensors were used to detect neutral oxygen atoms in the afterglow region of an inductively coupled rf discharge in oxygen. A very different response of the flat-surface and NW probes to the varying densities of oxygen atoms was explained by modelling heat conduction and taking into account the associated temperature gradients. It was found that the nanostructure probe can measure in a broader range than the flat oxide probe due to an increase in the surface to volume ratio, and the presence of nanostructures which act as a thermal barrier against sensor overheating. These results can be used for the development of the new generation of catalytic probes for gas/discharge diagnostics in a range of industrial and environmental applications.
Resumo:
This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso- tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4α-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4α-CoIITAPc and 4α-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4α-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.
Resumo:
Methods of diagnosis in Biomedical applications can be broadly divided into contact and non-contact based methods. So far, ultrasound based methods have been found to be most favorable for non-contact, non-invasive diagnosis, especially in the case of tissue stiffness analysis. We report here, the fabrication and characterization details of a new contact based transducer system for qualitative determination of the stiffnesses of non-piezoelectric substrates using the phenomenon of Surface Acoustic Waves (SAW). Preliminary trials to study the functionality of this system were carried out on various metallic and non-metallic substrates, and the results were found to be satisfactory. To confirm the suitability of this system for biomedical applications, similar trials have been conducted on tissue mimicking phantoms with varying degrees of stiffness.
Resumo:
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
Resumo:
The design of a solid electrolyte that permits the use of dissimilar gas electrodes in an electrochemical cell is presented. It consists of a functionally gradient material with spatial variation in composition. The activity of the conducting ion is fixed at each electrode using different gas species. The system chosen for demonstrating the concept consists of a solid solution between K2CO3 and K2SO4. The composition of the solid solution varies from pure K2CO3 in contact with a CO2 + O2 gas mixture at one electrode to pure K2SO4 exposed to a mixture of SO3 + SO2 + O2 at the other. Two types of composition profiles are studied, one with monotonic variation in composition and the other with extrema. The e.m.f. of the cells is studied as a function of temperature and composition of the gas mixture at each electrode. The results indicate that the e.m.f. is determined primarily by the difference in the chemical potential of potassium at the two electrodes. The diffusion potential caused by ionic concentration gradients in the electrolyte appears to be negligible when the corresponding ionic transport numbers are insignificant. Studies on the response characteristics of the cell based on the gradient electrolyte indicate that the nature of the variation in composition of the electrolyte has only a minor effect on the time evolution of e.m.f. The gradient solid electrolytes have potential application in multielement galvanic sensors at high temperatures.
Resumo:
A fuzzy logic intelligent system is developed for gas-turbine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. These four measurements are also called the cockpit parameters and are typically found in almost all older and newer jet engines. The fuzzy logic system uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. It automates the reasoning process of an experienced powerplant engineer. Tests with simulated data show that the fuzzy system isolates faults with an accuracy of 89% with only the four cockpit measurements. However, if additional pressure and temperature probes between the compressors and before the burner, which are often found in newer jet engines, are considered, the fault isolation accuracy rises to as high as 98%. In addition, the additional sensors are useful in keeping the fault isolation system robust as quality of the measured data deteriorates.
Resumo:
The effect of the test gas on the flow field around a 120degrees apex angle blunt cone has been investigated in a shock tunnel at a nominal Mach number of 5.75. The shock standoff distance around the blunt cone was measured by an electrical discharge technique using both carbon dioxide and air as test gases. The forebody laminar convective heat transfer to the blunt cone was measured with platinum thin-film sensors in both air and carbon dioxide environments. An increase of 10 to 15% in the measured heat transfer values was observed with carbon dioxide as the test gas in comparison to air. The measured thickness of the shock layer along the stagnation streamline was 3.57 +/- 0.17 mm in air and 3.29 +/- 0.26 mm in carbon dioxide. The computed thickness of the shock layer for air and carbon dioxide were 3.98 mm and 3.02 mm, respectively. The observed increase in the measured heat transfer rates in carbon dioxide compared to air was due to the higher density ratio across the bow shock wave and the reduced shock layer thickness.
Resumo:
New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.
Resumo:
Monodisperse polyhedral In(2)O(3) nanoparticles were synthesized by differential mobility classification of a polydisperse aerosol formed by evaporation of indium at atmospheric pressure. When free molten indium particles oxidize, oxygen is absorbed preferentially on certain planes leading to the formation of polyhedral In(2)O(3) nanoparticles. It is shown that the position of oxygen addition, its concentration, the annealing temperature and the type of carrier gas are crucial for the resulting particle shape and crystalline quality. Semiconducting nanopolyhedrals, especially nanocubes used for sensors, are expected to offer enhanced sensitivity and improved response time due to the higher surface area as compared to spherical particles.