907 resultados para Robotic Excavation
Resumo:
Energy substrate used by workers of leaf-cutting ants during nest excavation. In this study we aimed to ascertain whether leaf-cutting ant workers lose body reserves (fat or sugars) as a function of nest excavation. For each treatment, we isolated 10 workers of Atta sexdens into two experimental groups, Control (C- without excavation) and Soil (S- with excavation), which were kept for different time intervals (0, 24, 48 or 72 hours), totaling 700 tested workers. We then determined the concentration of soluble carbohydrates and total lipid content in them. The total carbohydrates were determined colorimetrically, based on the reaction between carbohydrates and sulfuric acid-phenol. For determination of lipids, the insects were immersed in organic solvent until they reached a constant weight. Our results showed that carbohydrates are consumed during nest excavation activities. In the experimental groups S24, S48 and S72, there was an average reduction of 5.82 (20.42%), 14.31 (44.96%) and 13.27 (43.96%) µ.mg-1 in soluble sugar when compared with the experimental groups that did not excavate. Furthermore, the lipids were not used during this activity. With respect to dry mass of the workers, their values were C0 = 8%, C24 = 10.4%, C48 = 9.2%, C72 = 10%, S24 = 9.2%, S48 = 8.7% and S72 = 8.5%. Our results show experimentally that the source of energy for nest excavation is carbohydrates, whereas lipids are conserved for other activities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soils of the Brazilian Cerrado biome have been found to be deficient in copper (Cu) and zinc (Zn). In this area, an Oxisol was deeply excavated in 1962 during the construction of a hydroelectrical plant, and the exposed saprolite material was abandoned, without any reclamation measures. The abandoned land was a harsh environment for plant growth, and the secondary vegetation has not recovered. A field trial was established in 1992 to assess the effects of different grass species and lime amendments on soil reclamation at the degraded site. In 2011 soil samples were collected at three depths (0-10, 10-20, and 20-40cm) from vegetated and bare plots over tilled saprolite, from an untreated area of the saprolite, and from an Oxisol under native forest, used as external reference. Nineteen years after the reclamation effort was begun, the organic carbon (OC) content of the restored saprolite still was much lower than that of the Oxisol under natural vegetation. The undisturbed Oxisol was deficient in extractable Cu (0.16-0.10mgkg(-1)) and Zn (0.10-0.02mgkg(-1)) and exhibited rather low concentrations of extractable iron (Fe; 5.24-1.47mgkg(-1)) and manganese (Mn; 3.21-0.77mgkg(-1)). However, the saprolite under reclamation showed even lower levels of these elements compared to the native forest soil. In the natural soil, OC, N, extractable Fe, Mn, and Cu showed stratification, but this was not the case for extractable Zn. Although the reclaimed saprolite still was far from predisturbance conditions, the revegetation treatments promoted recovery of OC, N, Fe, Mn, and Cu at the surface layers, which resulted in incipient stratification. Extractable Fe, Mn, and Cu were correlated to OC, whereas no association between Zn and OC was detected. Our results also suggest that reclamation of the excavated saprolite may be constrained by micronutrient deficiencies and mostly by the extremely low levels of Zn and Cu.
Resumo:
A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A robotic control design considering all the inherent nonlinearities of the robot engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case 1: For control positioning, it is only used motor voltage; Case 2: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.
Resumo:
Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task. This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels. The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search. The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.
Resumo:
Context A definite cause of sarcoidosis has not been identified, however past research suggests that environmental factors may be triggers of the granulomatous response in genetically susceptible individuals. Case Presentation A 22-year-old male non-smoker, presented with progressive exertional dyspnea and cough of 3 months duration. One year before, when he started working in tunnel excavation, he had a normal chest radiograph. Chest imaging revealed bilateral nodules and masses of peribronchovascular distribution plus mediastinal lymphadenomegaly. Histologic lymph node analysis revealed non-caseating confluent granulomas. Sarcoidosis was diagnosed. The patient was treated with corticosteroids and advised to change jobs. Complete remission of the disease was achieved and persisted for at least one year without steroid treatment. Discussion Sarcoidosis is believed to have environmental triggers. The timing of the onset of sarcoidosis in this patient following intensive exposure to tunnel dust suggests an environmental contribution. The recognition that sarcoidosis may have occupational triggers have medical, employment, and legal implications. Am. J. Ind. Med. 55: 390-394, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Large fine mode-dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often similar to 0.4-0.5 mu m radius (volume distribution); the smaller mode, typically similar to 0.12 to similar to 0.20 mu m, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the "shoulder" of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction.
Resumo:
CONTEXT AND PURPOSE: Partial nephrectomy has become the standard of care for renal tumors less than 4 cm in diameter. Controversy still exists, however, regarding the best surgical approach, especially when minimally invasive techniques are taken into account. Robotic-assisted laparoscopic partial nephrectomy (RALPN) has emerged as a promising technique that helps surgeons achieve the standards of open partial nephrectomy care while offering a minimally invasive approach. The objective of the present study was to describe our initial experience with robotic-assisted laparoscopic partial nephrectomy and extensively review the pertinent literature. MATERIALS AND METHODS: Between August 2009 and February 2010, eight consecutive selected patients with contrast enhancing renal masses observed by CT were submitted to RALPN in a private institution. In addition, we collected information on the patients' demographics, preoperative tumor characteristics and detailed operative, postoperative and pathological data. In addition, a PubMed search was performed to provide an extensive review of the robotic-assisted laparoscopic partial nephrectomy literature. RESULTS: Seven patients had RALPN on the left or right sides with no intraoperative complications. One patient was electively converted to a robotic-assisted radical nephrectomy. The operative time ranged from 120 to 300 min, estimated blood loss (EBL) ranged from 75 to 400 mL and, in five cases, the warm ischemia time (WIT) ranged from 18 to 32 min. Two patients did not require any clamping. Overall, no transfusions were necessary, and there were no intraoperative complications or adverse postoperative clinical events. All margins were negative, and all patients were disease-free at the 6-month follow-up. CONCLUSIONS: Robotic-assisted laparoscopic partial nephrectomy is a feasible and safe approach to small renal cortical masses.Further prospective studies are needed to compare open partial nephrectomy with its minimally invasive counterparts.
Resumo:
This thesis gathers the work carried out by the author in the last three years of research and it concerns the study and implementation of algorithms to coordinate and control a swarm of mobile robots moving in unknown environments. In particular, the author's attention is focused on two different approaches in order to solve two different problems. The first algorithm considered in this work deals with the possibility of decomposing a main complex task in many simple subtasks by exploiting the decentralized implementation of the so called \emph{Null Space Behavioral} paradigm. This approach to the problem of merging different subtasks with assigned priority is slightly modified in order to handle critical situations that can be detected when robots are moving through an unknown environment. In fact, issues can occur when one or more robots got stuck in local minima: a smart strategy to avoid deadlock situations is provided by the author and the algorithm is validated by simulative analysis. The second problem deals with the use of concepts borrowed from \emph{graph theory} to control a group differential wheel robots by exploiting the Laplacian solution of the consensus problem. Constraints on the swarm communication topology have been introduced by the use of a range and bearing platform developed at the Distributed Intelligent Systems and Algorithms Laboratory (DISAL), EPFL (Lausanne, CH) where part of author's work has been carried out. The control algorithm is validated by demonstration and simulation analysis and, later, is performed by a team of four robots engaged in a formation mission. To conclude, the capabilities of the algorithm based on the local solution of the consensus problem for differential wheel robots are demonstrated with an application scenario, where nine robots are engaged in a hunting task.
Resumo:
Introduzione alle strategie di robotic patrolling e analisi delle stesse. Applicazione ad uno scenario di una strategia e realizzazione di un robot patroller.
Resumo:
The application of dexterous robotic hands out of research laboratories has been limited by the intrinsic complexity that these devices present. This is directly reflected as an economically unreasonable cost and a low overall reliability. Within the research reported in this thesis it is shown how the problem of complexity in the design of robotic hands can be tackled, taking advantage of modern technologies (i.e. rapid prototyping), leading to innovative concepts for the design of the mechanical structure, the actuation and sensory systems. The solutions adopted drastically reduce the prototyping and production costs and increase the reliability, reducing the number of parts required and averaging their single reliability factors. In order to get guidelines for the design process, the problem of robotic grasp and manipulation by a dual arm/hand system has been reviewed. In this way, the requirements that should be fulfilled at hardware level to guarantee successful execution of the task has been highlighted. The contribution of this research from the manipulation planning side focuses on the redundancy resolution that arise in the execution of the task in a dexterous arm/hand system. In literature the problem of coordination of arm and hand during manipulation of an object has been widely analyzed in theory but often experimentally demonstrated in simplified robotic setup. Our aim is to cover the lack in the study of this topic and experimentally evaluate it in a complex system as a anthropomorphic arm hand system.