215 resultados para Richemont, Gust. de
Resumo:
Paging and text continuous.
Resumo:
With ex libris of Lud. Gust. Wilh. Ruprecht.
Resumo:
Advertising matter: p. 920.
Resumo:
Low German poem, first printed at Lübeck, 1498.
Resumo:
"1040" inscribed on the verso of the front fly-leaf, volumes 1 & 2.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Purpose – The purpose of this paper is to investigate how research and development (R&D) collaboration takes place for complex new products in the automotive sector. The research aims to give guidelines to increase the effectiveness of such collaborations. Design/methodology/approach – The methodology used to investigate this issue was grounded theory. The empirical data were collected through a mixture of interviews and questionnaires. The resulting inducted conceptual models were subsequently validated in industrial workshops. Findings – The findings show that frontloading of the collaborative members was a major issue in managing successful R&D collaborations. Research limitations/implications – The limitation of this research is that it is only based in the German automotive industry. Practical implications – Practical implications have come out of this research. Models and guidelines are given to help make a success of collaborative projects and their potential impacts on time, cost and quality metrics. Originality/value – Frontloading is not often studied in a collaborative manner; it is normally studied within just one organisation. This study has novel value because it has involved a number of different members throughout the supplier network.
Resumo:
Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. ^ Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. ^ Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably. ^
Resumo:
Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.
Resumo:
The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.
Resumo:
von Dr. Gust. Fr. Oehler, weil ord. Prof. der Theol., Ephorus des evang.-theol. Seminars in Tübingen
Resumo:
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
Resumo:
[EN]Understanding coastal dune field evolution is a challenge because of their complex dynamic nature. This work has been carried out by means of photointerpretation of 5 orthophotos covering the period 1994-2014. A geographical information system has been developed, including information of the three geomorphological landforms (sand sheets, dune areas, and deflation surfaces) present in the area, as well two additional information layers (vegetation and artificial structures) that interact with the previous ones. The GIS also includes information of the dune crests movement over the same period, which has been correlated with gust wind data.