920 resultados para Reverse Genetics
3rd International Meeting on Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases
Resumo:
Summary (in English) Computer simulations provide a practical way to address scientific questions that would be otherwise intractable. In evolutionary biology, and in population genetics in particular, the investigation of evolutionary processes frequently involves the implementation of complex models, making simulations a particularly valuable tool in the area. In this thesis work, I explored three questions involving the geographical range expansion of populations, taking advantage of spatially explicit simulations coupled with approximate Bayesian computation. First, the neutral evolutionary history of the human spread around the world was investigated, leading to a surprisingly simple model: A straightforward diffusion process of migrations from east Africa throughout a world map with homogeneous landmasses replicated to very large extent the complex patterns observed in real human populations, suggesting a more continuous (as opposed to structured) view of the distribution of modern human genetic diversity, which may play a better role as a base model for further studies. Second, the postglacial evolution of the European barn owl, with the formation of a remarkable coat-color cline, was inspected with two rounds of simulations: (i) determine the demographic background history and (ii) test the probability of a phenotypic cline, like the one observed in the natural populations, to appear without natural selection. We verified that the modern barn owl population originated from a single Iberian refugium and that they formed their color cline, not due to neutral evolution, but with the necessary participation of selection. The third and last part of this thesis refers to a simulation-only study inspired by the barn owl case above. In this chapter, we showed that selection is, indeed, effective during range expansions and that it leaves a distinguished signature, which can then be used to detect and measure natural selection in range-expanding populations. Résumé (en français) Les simulations fournissent un moyen pratique pour répondre à des questions scientifiques qui seraient inabordable autrement. En génétique des populations, l'étude des processus évolutifs implique souvent la mise en oeuvre de modèles complexes, et les simulations sont un outil particulièrement précieux dans ce domaine. Dans cette thèse, j'ai exploré trois questions en utilisant des simulations spatialement explicites dans un cadre de calculs Bayésiens approximés (approximate Bayesian computation : ABC). Tout d'abord, l'histoire de la colonisation humaine mondiale et de l'évolution de parties neutres du génome a été étudiée grâce à un modèle étonnement simple. Un processus de diffusion des migrants de l'Afrique orientale à travers un monde avec des masses terrestres homogènes a reproduit, dans une très large mesure, les signatures génétiques complexes observées dans les populations humaines réelles. Un tel modèle continu (opposé à un modèle structuré en populations) pourrait être très utile comme modèle de base dans l'étude de génétique humaine à l'avenir. Deuxièmement, l'évolution postglaciaire d'un gradient de couleur chez l'Effraie des clocher (Tyto alba) Européenne, a été examiné avec deux séries de simulations pour : (i) déterminer l'histoire démographique de base et (ii) tester la probabilité qu'un gradient phénotypique, tel qu'observé dans les populations naturelles puisse apparaître sans sélection naturelle. Nous avons montré que la population actuelle des chouettes est sortie d'un unique refuge ibérique et que le gradient de couleur ne peux pas s'être formé de manière neutre (sans l'action de la sélection naturelle). La troisième partie de cette thèse se réfère à une étude par simulations inspirée par l'étude de l'Effraie. Dans ce dernier chapitre, nous avons montré que la sélection est, en effet, aussi efficace dans les cas d'expansion d'aire de distribution et qu'elle laisse une signature unique, qui peut être utilisée pour la détecter et estimer sa force.
Resumo:
ABSTRACT : The retina is one of the most important human sensory tissues since it detects and transmits all visual information from the outside world to the brain. Retinitis pigmentosa (RP) is the name given to a group of inherited diseases that affect specifically the photoreceptors present in the retina and in many instances lead to blindness. Dominant mutations in PRPF31, a gene that encodes for a pre-mRNA splicing factor, cause retinitis pigmentosa with reduced penetrance. We functionally investigated a novel mutation, identified in a large family with autosomal dominant RP, and 7 other mutations, substitutions and microdeletions, in 12 patients from 7 families with PRPF31-linked RP. Seven mutations lead to PRPF31 mRNA with premature stop codons and one to mRNA lacking the exon containing the initiation codon. Quantification of PRPF31 mRNA and protein levels revealed a significant reduction in cell lines derived from patients, compared to non carriers of mutations in PRPF31. Allelic quantification of PRPF31 mRNA indicated that the level of mutated mRNA is very low compared to wild-type mRNA. No mutant protein was detected and the subnuclear localization of wild-type PRPF31 remains the same in cell lines from patients and controls. Blocking nonsense-mediated mRNA decay in cell lines derived from patients partially restored PRPF31 mutated mRNA but derived proteins were still undetectable, even when protein degradation pathways were inhibited. Our results demonstrated that the vast majority of PRPF31 mutations result in null alleles, since they are subject to surveillance mechanisms that degrade mutated mRNA and possibly block its translation. Altogether, these data indicate that the likely cause of PRPF31-linked RP is haploinsufficiency, rather than a dominant negative effect. Penetrance of PRPF31 mutations has been previously demonstrated to be inversely correlated with the level of PRPF31 mRNA, since high expression of wild-type PRPF31 mRNA protects from the disease. Consequently, we have investigated the genetic modifiers that control the expression of PRPF31 by quantifying PRPF31 mRNA levels in cell lines derived from 200 individuals from 15 families representative of the general population. By linkage analyses we identified a 8.2Mb-region on chromosome 14q21-23 that contains a gene involved in the modulation of PRPF31 expression. We also assessed apreviously-mapped penetrance factor invariably located on the wild-type allele and linked to the PRPF31 locus in asymptomatic patients from different families with RP. We demonstrated that this modifier increases the expression of both PRPF31 alleles already at the pre-mRNA level. Finally, our data suggest that PRPF31 mRNA expression and consequently the penetrance of PRPF31 mutations is modulated by at least 2 diffusible compounds, which act on both PRPF31 alleles during their transcription.
Resumo:
Mice from most inbred strains are resistant to infection with Leishmania major whereas mice from BALB strains are highly susceptible. Resistance and susceptibility result from the development of Th1 or Th2 cells, respectively. In this report, we document an IL-2 mRNA burst, preceding the reported early IL-4 response, in draining lymph nodes of susceptible mice infected with L. major. Neutralization of IL-2 during the first days of infection redirected Th1 cell maturation and resistance to L. major, through interference with the rapid IL-4 transcription in Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) cells. A burst of IL-2 transcripts also occurred in infected C57BL/6 mice that do not mount an early IL-4 response. However, although the LACK protein induced IL-2 transcripts in susceptible mice, it failed to trigger this response in resistant C57BL/6 mice. Reconstitution experiments using C.B.-17 SCID mice and LACK-reactive CD4(+) T cells from IL-2(-/-) BALB/c mice showed that triggering of the early IL-4 response required autocrine IL-2. Thus, in C57BL/6 mice, the inability of LACK-reactive CD4(+) T cells to express early IL-4 mRNA transcription, important for disease progression, appears due to an incapacity of these cells to produce IL-2.
Resumo:
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Resumo:
AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.
Resumo:
Sleep disorders are very prevalent and represent an emerging worldwide epidemic. However, research into the molecular genetics of sleep disorders remains surprisingly one of the least active fields. Nevertheless, rapid progress is being made in several prototypical disorders, leading recently to the identification of the molecular pathways underlying narcolepsy and familial advanced sleep-phase syndrome. Since the first reports of spontaneous and induced loss-of-function mutations leading to hypocretin deficiency in human and animal models of narcolepsy, the role of this novel neurotransmission pathway in sleep and several other behaviors has gained extensive interest. Also, very recent studies using an animal model of familial advanced sleep-phase syndrome shed new light on the regulation of circadian rhythms.
Resumo:
MCT2 is the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate. It is suggested that MCT2 is upregulated to meet enhanced energy demands after modifications in synaptic transmission. Brain-derived neurotrophic factor (BDNF), a promoter of synaptic plasticity, significantly increased MCT2 protein expression in cultured cortical neurons (as shown by immunocytochemistry and western blot) through a translational regulation at the synaptic level. Brain-derived neurotrophic factor can cause translational activation through different signaling pathways. Western blot analyses showed that p44/p42 mitogen-activated protein kinase (MAPK), Akt, and S6 were strongly phosphorylated on BDNF treatment. To determine by which signal transduction pathway(s) BDNF mediates its upregulation of MCT2 protein expression, the effect of specific inhibitors for p38 MAPK, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), p44/p42 MAPK (ERK), and Janus kinase 2 (JAK2) was evaluated. It could be observed that the BDNF-induced increase in MCT2 protein expression was almost completely blocked by all inhibitors, except for JAK2. These data indicate that BDNF induces an increase in neuronal MCT2 protein expression by a mechanism involving a concomitant stimulation of PI3K/Akt/mTOR/S6, p38 MAPK, and p44/p42 MAPK. Moreover, our observations suggest that changes in MCT2 expression could participate in the process of synaptic plasticity induced by BDNF.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Resumo:
Cefotaxime, given in two doses (each 100 mg/kg of body weight), produced a good bactericidal activity (-0.47 Deltalog(10) CFU/ml. h) which was comparable to that of levofloxacin (-0.49 Deltalog(10) CFU/ml. h) against a penicillin-resistant pneumococcal strain WB4 in experimental meningitis. Cefotaxime combined with levofloxacin acted synergistically (-1.04 Deltalog(10) CFU/ml. h). Synergy between cefotaxime and levofloxacin was also demonstrated in vitro in time killing assays and with the checkerboard method for two penicillin-resistant strains (WB4 and KR4). Using in vitro cycling experiments, the addition of cefotaxime in sub-MIC concentrations (one-eighth of the MIC) drastically reduced levofloxacin-induced resistance in the same two strains (64-fold increase of the MIC of levofloxacin after 12 cycles versus 2-fold increase of the MIC of levofloxacin combined with cefotaxime). Mutations detected in the genes encoding topoisomerase IV (parC and parE) and gyrase (gyrA and gyrB) confirmed the levofloxacin-induced resistance in both strains. Addition of cefotaxime in low doses was able to suppress levofloxacin-induced resistance.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
The Directory of Familial Cancer Genetics Specialist Teams has been produced under the auspices of the Northern Ireland Regional Advisory Committee on Cancer. It contains details of the full membership of the clinical teams providing care in each of Health and Social Services Board Area. Lead Clinicians for Familial Cancer Genetics Service (PDF 58 KB) Eastern (PDF 68 KB) Northern (PDF 61 KB) Southern (PDF 62 KB) Western (PDF 11 KB) The Directory will be updated on an annual basis. Please e-mail amendments to:- irene.wilkinson@dhsspsni.gov.uk
Resumo:
BACKGROUND: Early virological failure of antiretroviral therapy associated with the selection of drug-resistant human immunodeficiency virus type 1 in treatment-naive patients is very critical, because virological failure significantly increases the risk of subsequent failures. Therefore, we evaluated the possible role of minority quasispecies of drug-resistant human immunodeficiency virus type 1, which are undetectable at baseline by population sequencing, with regard to early virological failure. METHODS: We studied 4 patients who experienced early virological failure of a first-line regimen of lamivudine, tenofovir, and either efavirenz or nevirapine and 18 control patients undergoing similar treatment without virological failure. The key mutations K65R, K103N, Y181C, M184V, and M184I in the reverse transcriptase were quantified by allele-specific real-time polymerase chain reaction performed on plasma samples before and during early virological treatment failure. RESULTS: Before treatment, none of the viruses showed any evidence of drug resistance in the standard genotype analysis. Minority quasispecies with either the M184V mutation or the M184I mutation were detected in 3 of 18 control patients. In contrast, all 4 patients whose treatment was failing had harbored drug-resistant viruses at low frequencies before treatment, with a frequency range of 0.07%-2.0%. A range of 1-4 mutations was detected in viruses from each patient. Most of the minority quasispecies were rapidly selected and represented the major virus population within weeks after the patients started antiretroviral therapy. All 4 patients showed good adherence to treatment. Nonnucleoside reverse-transcriptase inhibitor plasma concentrations were in normal ranges for all 4 patients at 2 separate assessment times. CONCLUSIONS: Minority quasispecies of drug-resistant viruses, detected at baseline, can rapidly outgrow and become the major virus population and subsequently lead to early therapy failure in treatment-naive patients who receive antiretroviral therapy regimens with a low genetic resistance barrier.