1000 resultados para Resolución 46 de 2012
Resumo:
Bordetella pertussis is a gram-negative bacillus that causes the highly contagious disease known as pertussis or whooping cough. Antibody response in children may vary depending on the vaccination schedule and the product used. In this study, we have analyzed the antibody response of cellular pertussis vaccinated children against B. pertussis strains and their virulence factors, such as pertussis toxin, pertactin, and filamentous hemagglutinin. After the completion of the immunization process, according to the Brazilian vaccination program, children serum samples were collected at different periods of time, and tested for the presence of specific antibodies and antigenic cross-reactivity. Results obtained show that children immunized with three doses of the Brazilian whole-cell pertussis vaccine present high levels of serum antibodies capable of recognizing the majority of the components present in vaccinal and non-vaccinal B. pertussis strains and their virulence factors for at least 2 years after the completion of the immunization procedure.
Resumo:
Oropouche (OROV) is a single-stranded RNA arbovirus of the family Bunyaviridae, genus Orthobunyavirus, which has caused over half a million cases of febrile illness in Brazil in the past 30 years. OROV fever has been registered almost exclusively in the Amazon region, but global warming, deforestation and redistribution of vectors and animal reservoirs increases the risk of Oropouche virus emergence in other areas. OROV causes a cytolytical infection in cultured cells with characteristic cytopathic effect 48 h post-infection. We have studied the mechanisms of apoptosis induced by OROV in HeLa cells and found that OROV causes DNA fragmentation detectable by gel electrophoresis and by flow cytometric analysis of the Sub-G1 population at 36 h post-infection. Mitochondrial release of cytochrome C and activation of caspases 9 and 3 were also detected by western blot analysis. Lack of apoptosis induced by UV-inactivated OROV reveals that virus-receptor binding is not sufficient to induce cell death. Results obtained in cells treated with chloroquine and cycloheximide indicated that viral uncoating and replication are required for apoptosis induction by OROV. Furthermore, treatment of the cells with pan-caspase inhibitor prevented OROV-induced apoptosis without affecting virus progeny production. The results show that OROV infection in vitro causes apoptosis by an intracellular pathway involving mitochondria, and activated by a mechanism dependent on viral replication and protein synthesis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study assessed the occurrence of human rhinovirus (HRV) species in outpatient children attending day-care in Sao Paulo, Brazil. HRV reverse transcriptase polymerase chain reaction and amplicon sequencing were done in 120 samples collected in 2008. HRV was detected in 27.5% of samples. HRV C was detected in 60.7% of wheezers, a frequency not different from that observed in nonwheezers (69.6%).
Resumo:
Legionella pneumophila, the etiological agent of Legionnaires disease, is known to trigger pore formation in bone marrow-derived macrophages (BMMs) by mechanisms dependent on the type IVB secretion system known as Dot/Icm. Here, we used several mutants of L. pneumophila in combination with knockout mice to assess the host and bacterial factors involved in pore formation in BMMs. We found that regardless of Dot/Icm activity, pore formation does not occur in BMMs deficient in caspase-1 and Nlrc4/Ipaf. Pore formation was temporally associated with interleukin-1 beta secretion and preceded host cell lysis and pyroptosis. Pore-forming ability was dependent on bacterial Dot/Icm but independent of several effector proteins, multiplication, and de novo protein synthesis. Flagellin, which is known to trigger the Nlrc4 inflammasome, was required for pore formation as flaA mutant bacteria failed to induce cell permeabilization. Accordingly, transfection of purified flagellin was sufficient to trigger pore formation independent of infection. By using 11 different Legionella species, we found robust pore formation in response to L. micdadei, L. bozemanii, L. gratiana, L. jordanis, and L. rubrilucens, and this trait correlated with flagellin expression by these species. Together, the results suggest that pore formation is neither L. pneumophila specific nor the result of membrane damage induced by Dot/Icm activity; instead, it is a highly coordinated host cell response dependent on host Nlrc4 and caspase-1 and on bacterial flagellin and type IV secretion system.
Resumo:
Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms.
Resumo:
Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Gangliosides are known to be important in many biological processes. However, details concerning the exact function of these glycosphingolipids in cell physiology are poorly understood. in this study, the role of gangliosides present on the surface of rodent mast cells in maintaining cell structure was examined using RBL-2H3 mast cells and two mutant cell lines (E5 and D1) deficient in the gangliosides, GM(1) and the alpha-galactosyl derivatives of the ganglioside GD(1b). The two deficient cell lines were morphologically different from each other as well as from the parental RBL-2H3 cells. Actin filaments in RBL-2H3 and E5 cells were under the plasma membrane following the spindle shape of the cells, whereas in D1 cells, they were concentrated in large membrane ruffles. Microtubules in RBL-2H3 and E5 cells radiated from the centrosome and were organized into long, straight bundles. The bundles in D1 cells were thicker and organized circumferentially under the plasma membrane. The endoplasmic reticulum, the Golgi complex, and the secretory granule matrix were also altered in the mutant cell lines. These results suggest that the mast cell-specific alpha-galactosyl derivatives of ganglioside GD(1b) and GM(1) are important in maintaining normal cell morphology. (J Histochern Cytochem 58:83-93, 2010)
Resumo:
Purpose: To create a retinal neovascularization experimental model using intravitreal injection of microspheres loaded with latex-derived angiogenic fraction. Methods: Thirty-two albino New Zealand rabbits, divided in 4 groups of 8 animals, were enrolled in this study. Rabbits in groups I, II, and III received one intravitreal injection of PLGA (L-lactide-co-glycolide) microspheres with 10, 30, and 50 mu g of latex-derived angiogenic fraction into their right eyes, respectively, and group IV received 0.1 ml of microspheres without the angiogenic fraction. Weekly follow-up with ophthalmoscopy and fluorescein angiography was performed; the rabbits were sacrificed in the 4th week and their eyes processed for light microscopy. Results: All eyes from group I demonstrated increased retinal vascular tortuosity, observed from 14 days after injection and maintained for 28 days, otherwise without new vessels detection. All group II eyes showed vascular changes similar to group I. Fifty percent of the eyes from group II rabbits developed retinal neovascularization 21 days after injection. All eyes from group III demonstrated significant vascular tortuosity and retinal new vessels 2 weeks after injection, progressing to fibrovascular proliferation and tractional retinal detachment. No vascular changes or retinal new vessels were observed in group IV eyes. Light microscopy confirmed the existence of new vessels previously seen on fluorescein angiography, in retinal sections adjacent to the optic disc, not observed in sections at the same area in the control group. Conclusion: Thirty- and 50-mu g microspheres containing latex-derived angiogenic fraction injected into the vitreous cavity induced retinal neovascularization in rabbits.
Resumo:
In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.
Resumo:
Recently we have shown that BhSGAMP-1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20-OH ecdysone. This control probably involves the participation of short-lived repressor(s). We also found that the promoter of BhSGAMP-1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP-1 peptide is secreted in the saliva. The BhSGAMP-1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect`s immediate vicinity, during molts. genesis 47:847-857, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The detection of replicative intermediate RNAs as markers of active replication of RNA viruses is an essential tool to investigate pathogenesis in acute viral infections, as well as in their long-term sequelae. In this regard, strand-specific PCR has been used widely to distinguish (-) and (+) enteroviral RNAs in pathogenesis studies of diseases such as dilated cardiomyopathy. It has been generally assumed that oligonucleotide-primed reverse transcription of a given RNA generates only the corresponding specific cDNA, thus assuring the specificity of a PCR product amplified from it. Nevertheless, such assumed strand-specificity is a fallacy, because falsely primed cDNAs can be produced by RNA reverse transcription in the absence of exogenously added primers, (cDNA(primer)(-)), and such falsely primed cDNAs are amplifiable by PCR in the same way as the correctly primed cDNAs. Using as a prototype the coxsackievirus B5 (CVB5), a (+) strand RNA virus, it was shown that cDNA(primer)(-) renders the differential detection of viral (-) and (+) RNAs by conventional PCR virtually impossible, due to gross non-specificity. Using in vitro transcribed CVB5 RNAs (+) and (-), it was shown that cDNA(primer)(-) could be removed effectively by magnetic physical separation of correctly primed biotinylated cDNA. Such strategy enabled truly strand-specific detection of RNA (-) and (+), not only for CVB5, but also for other non-polio enteroviruses. These findings indicate that previous conclusions supporting a role for the persistence of actively replicating enterovirus in the pathogenesis of chronic myocarditis should be regarded with strong skepticism and purification of correctly primed cDNA should be used for strand-specific PCR of viral RNA in order to obtain reliable information on this important subject. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A mononuclear phagocyte derived from B1b cells (B1CDP) has been described. As these cells migrate from the peritoneal cavity to non-specific inflammatory lesion sites and are highly phagocytic via Fc and mannose receptors, their microbicidal ability of these cells was investigated using the Coxiella burnetii cell infection model in vitro. In this report, the pattern of infection and C burnetii phase II survival in B1CDP phagosomes was compared with the pattern of infection of peritoneal macrophages from Xid mice (PM phi) and bone marrow derived macrophages (BMM phi). Infection was assessed by determining the large parasitophorous vacuole formation, the relative focus forming units and the quantification of DAPI (4`,6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy. When compared to macrophages, B1CDP are more permissive to the bacterial infection and less effective to kill them. Further, results suggest that IL-10 secreted by B1 cells are involved in their susceptibility to infection by C burnetti, since B1CDP from IL-10 KO mice are more competent to control C. burnetii infection than cells from wild type mice. These data contribute further to characterize B1CDP as a novel mononuclear phagocyte. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Wood-dwelling termites are characterized by an extremely high and unique developmental flexibility that allows workers, which are immatures, to explore all caste options. The endocrine signatures underlying this flexibility are only vaguely understood. We determined juvenile hormone (JH) and ecdysteroid hemolymph titers during postembryonic development and in terminal instars of the drywood termite Cryptotermes secundus using field and laboratory colonies. Postembryonic development is characterized by a drop in JH titers at the transition from larval (individuals without wing buds) to nymphal (individuals with wing buds) instars. JH titers were low in winged sexuals and reproducing primary reproductives (< 200 pg/mu l) but were by an order of magnitude higher in neotenic replacement reproductives. The unique regressive molts of termites seem to be characterized by elevated JH titers, compared with progressive or stationary molts. Ecdysteroid titers were generally low in nymphal instars and in primary reproductives (< 50 pg/mu l). It was only during the third and fourth nymphal instars and in winged sexuals where some individuals showed elevated ecdysteroid titers. These results are the most comprehensive endocrinological data set available for any lower termite, with the potential to serve as baseline for understanding the extreme developmental flexibility underlying the evolution of social life in termites.
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.