947 resultados para Resistivity sensors
Resumo:
Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.
Resumo:
A temperature compensation method is proposed for CNT-composite strain sensors. CNT-composite sensors are fabricated on an elastic polymer substrate having known thermo-mechanical properties to introduce thermo-mechanical strain and further calibration of the sensor. Strain is induced on the sensor by bending the substrate as a cantilever configuration. Response of the sensor is measured using a bridge circuit method. Induced strain in the beam is determined using beam theory. The sensors are characterized for different CNT concentrations and at various temperatures. A model based temperature compensation scheme is proposed and verified experimentally. The result proves the ability of CNT-nanocomposite strain sensors to be used under varying temperature applications. A method is proposed to determine the strain and temperature simultaneously. The CNT sensors are simple to fabricate in complex patterns with excellent repeatability and do not require bonding layer.
Resumo:
The variation of normalized electrical resistivity in the system of glasses Ge15Te85-xSnx with (1 <= x <= 5) has been studied as a function of high pressure for pressures up to 9.5 GPa. It is found that with the increase in pressure, the resistivity decreases initially and shows an abrupt fall at a particular pressure, indicating the phase transition from semiconductor to near metallic at these pressures, which lie in the range 1.5-2.5 GPa, and then continues being metallic up to 9.5 GPa. This transition pressure is seen to decrease with the increase in the percentage content of tin due to increasing metallicity of tin. The semiconductor to near metallic transition is exactly reversible and may have its origin in a reduction of the band gap due to high pressure.
Resumo:
A real-time cooperative localization system, utilizing dual foot-mounted low-cost inertial sensors and RF-based inter-agent ranging, has been developed. Scenario-based tests have been performed, using fully-equipped firefighters mimicking a search operation in a partly smoke-filled environment, to evaluate the performance of the TOR (Tactical lOcatoR) system. The performed tests included realistic firefighter movements and inter-agent distances, factors that are crucial in order to provide realistic evaluations of the expected performance in real-world operations. The tests indicate that the TOR system may be able to provide a position accuracy of approximately two to three meters during realistic firefighter operations, with only two smoke diving firefighters and one supervising firefighter within range.
Resumo:
One of the most interesting predicted applications of graphenemonolayer-based devices is as high-quality sensors. In this article, we show, through systematic experiments, a chemical vapor sensor based on the measurement of lowfrequency resistance fluctuations of single-layer-graphene field-effect-transistor devices. The sensor has extremely high sensitivity, very high specificity, high fidelity, and fast response times. The performance of the device using this scheme of measurement (which uses resistance fluctuations as the detection parameter) is more than 2 orders of magnitude better than a detection scheme in which changes in the average value of the resistance is monitored. We propose a number-densityfluctuation-based model to explain the superior characteristics of a noisemeasurement-based detection scheme presented in this article.
Resumo:
Selective and discriminative detection of -NO2 containing high energy organic compounds such as picric acid (PA), 2,4,6-trinitrotoluene (TNT) and dinitrotoluene (DNT) has become a challenging task due to concerns over national security, criminal investigations and environment protections. Among various known detection methods, fluorescence techniques have gained special attention in recent time. A wide variety of fluorescent chemosensors have been developed for nitroaromatic explosive detection. In this review article, we provide an overview of the recent developments made in small molecule-based turn-off fluorescent sensors for nitroaromatic explosives with special focus on organic and H-bonded supramolecular sensors. The fluorescent sensors discussed in this review are classified and organized according to their functionality and their recognition of nitroaromatics by fluorescence quenching.
Resumo:
We discuss here a semiconductors assembly comprising of titanium dioxide (TiO2) rods sensitized by cadmium sulfide (CdS) nanocrystals for potential applications in large area electronics on three dimensional (3-D) substrates. Vertically aligned TiO2 rods are grown on a substrate using a 150 degrees C process flow and then sensitized with CdS by SILAR method at room temperature. This structure forms an effective photoconductor as the photo-generated electrons are rapidly removed from the CdS via the TiO2 thereby permitting a hole rich CdS. Current-voltage characteristics are measured and models illustrate space charge limited photo-current as the mechanism of charge transport at moderate voltage bias. The stable assembly and high speed are achieved. The frequency response with a loading of 10 pF and 9 M Omega shows a half power frequency of 100 Hz. (C) 2015 The Electrochemical Society. All rights reserved.
Resumo:
The down conversion of radio frequency components around the harmonics of the local oscillator (LO), and its impact on the accuracy of white space detection using integrated spectrum sensors, is studied. We propose an algorithm to mitigate the impact of harmonic downconversion by utilizing multiple parallel downconverters in the system architecture. The proposed algorithm is validated on a test-board using commercially available integrated circuits and a test-chip implemented in a 130-nm CMOS technology. The measured data show that the impact of the harmonic downconversion is closely related to the LO characteristics, and that much of it can be mitigated by the proposed technique.
Resumo:
The demand for variety of products and the shorter time to market is encouraging designers to adopt computer aided concept generation techniques. One such technique is being explored here. The present work makes an attempt towards synthesis of concepts for sensors using physical laws and effects as building blocks. A database of building blocks based upon the SAPPhIRE-lite model of causality is maintained. It uses composition to explore the solution space. The algorithm has been implemented in a web based tool. The tool generates two types of sensor designs: direct sensing designs and feedback sensing designs. According to the literature, synthesis using building blocks often lead to vague solutions principles. The current work tries to avoid uninteresting solutions by using some heuristics. A particularly novel outcome of the work described here is the generation of feedback based solutions, something not generated automatically before. A number of patent violations were observed with the set of generated concepts; thus emphasizing some amount of novelty in the designs.
Resumo:
The variation in the electrical resistivity of the chalcogenide glasses Ge15Te85-x has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.
Resumo:
This article is aimed to delineate groundwater sources in Holocene deposits area in the Gulf of Mannar Coast from Southern India. For this purpose 2-D electrical resistivity tomography (ERT), hydrochemical and granulomerical studies were carried out and integrated to identify hydrogeological structures and portable groundwater resource in shallow depths which in general appears in the coastal tracts. The 2-D ERT was used to determine the two-dimensional subsurface geological formations by multicore cable with Wenner array. Low resistivity of 1-5 Omega m for saline water appeared due to calcite at the depth of about 5 m below the ground level (bgl). Sea water intrusion was observed around the maximum resistivity as 5 Omega m at the 8 m depth, bgl in the calcite environs, but the calcareous sandstone layer shows around 15-64 Omega m at the 6 m depth, bgl. The hydrochemical variation of TDS, HCO3-, Cl-, Na+, K+, Ca2+, and Mg2+ concentrations was observed for the saline and sea water intrusion in the groundwater system. The granulometic analysis shows that the study area was under the sea between 5400 and 3000 year ago. The events of ice melting an unnatural ice-stone rain/hail among 5000-4000 years ago resulted in the inundation of sea over the area and deposits of late Holocene marine transgression formation up to Puthukottai quartzite region for a stretch of around 17 km.
Resumo:
Ready-to-use screen printed glucose sensors are fabricated using Prussian Blue (PB) and Cobalt Phthalocyanine (CoPC) mediated carbon inks as working electrodes. The reference and counter electrodes are screen printed using silver/silver chloride and graphitic carbon paste respectively. The screen printed reference electrodes (internal reference electrode (IRE)) are found to be stable for more than 60 minutes when examined with saturated calomel electrode. Optimal operating voltage for PB and CoPC screen printed sensors are determined by hydrodynamic voltammetric technique. Glucose oxidase is immobilized on the working electrodes by cross-linking method. PB mediated glucose sensor exhibits a sensitivity of 5.60 mA cm(-2)/mM for the range, 10 to 1000 mu M. Sensitivity of CoPC mediated glucose sensor is found to be 5.224 mu A cm(-2)/mM and amperometeric response is linear for the range, 100 to 1500 mu M. Interference studies on the fabricated glucose sensors are conducted with species like uric acid and ascorbic acid. PB mediated sensors showed a completely interference-free behavior. The sensing characteristics of PB mediated glucose sensors are also studied in diluted human serum samples and the results are compared with the values obtained through standard clinical method. The co-efficient of variation is found to be less than 5%. (C) 2015 The Electrochemical Society. All rights reserved.
Resumo:
The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.
Resumo:
We report the investigation of biotin-streptavidin binding interactions using microcantilever sensors. A symmetric cantilever construction is employed to minimize the effects of thermal drift and the control of surface chemistry on the backside of the cantilever is demonstrated to reduce the effects of non-specific binding interactions on the cantilever. Three structurally different biotin modified cantilever surfaces are used as a model system to study the binding interaction with streptavidin. The cantilever response to the binding of streptavidin on these biotin sensing monolayers is compared. The lowest detection limit of streptavidin using biotin-HPDP is found to be between 1 and 10 nM limited by the optical measurement setup. Surface characterization using quartz crystal microbalance (QCM) and high-resolution atomic force microscope (AFM) is used to benchmark the cantilever sensor response. In addition, the QCM and AFM studies reveal that the surface density of bound streptavidin on biotin modified surfaces was low, thereby implying that effects other than steric hindrance are responsible for defining cantilever response. (c) 2006 Elsevier B.V. All rights reserved.