971 resultados para Reserve Selection Algorithms
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
A novel screening strategy has been developed for the identification of alpha-chymotrypsin inhibitors from a phage peptide library. In this strategy, the standard affinity selection protocol was modified by adding a proteolytic cleavage period to avoid recovery of alpha-chymotrypsin substrates. After four cycles of selection and further activity assay, a group of related peptides were identified by DNA sequencing. These peptides share a consensus sequence motif as (S/T)RVPR(R/H). Then, a corresponding short peptide (Ac-ASRVPRRG-NH2) was synthesized chemically and proved to be an inhibitor of alpha-chymotrypsin. The present work provides a useful way for searching proteinase inhibitors without detailed knowledge of the molecular structure.
Resumo:
Aspergillus foetidus ACR I 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4 g of citric acid per 100 g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74 g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30 degrees C, an unadjusted initial pH of 3.4, a particle size of 2 mm and 5 ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.
Resumo:
A 12 week kayak training programme was evaluated in children who either had or did not have the anthropometric characteristics identified as being unique to senior elite sprint kayakers. Altogether, 234 male and female school children were screened to select 10 children with and 10 children without the identified key anthropometric characteristics. Before and after training, the children completed an all-out 2 min kayak ergometer simulation test; measures of oxygen consumption, plasma lactate and total work accomplished were recorded. In addition, a 500 m time trial was performed at weeks 3 and 12. The coaches were unaware which 20 children possessed those anthropometric characteristics deemed to favour development of kayak ability. All children improved in both the 2 min ergometer simulation test and 500 m time trial. However, boys who were selected according to favourable anthropometric characteristics showed greater improvement than those without such characteristics in the 2 min ergometer test only. In summary, in a small group of children selected according to anthropometric data unique to elite adult kayakers, 12 weeks of intensive kayak training did not influence the rate of improvement of on-water sprint kayak performance.
Resumo:
Extended gcd calculation has a long history and plays an important role in computational number theory and linear algebra. Recent results have shown that finding optimal multipliers in extended gcd calculations is difficult. We present an algorithm which uses lattice basis reduction to produce small integer multipliers x(1), ..., x(m) for the equation s = gcd (s(1), ..., s(m)) = x(1)s(1) + ... + x(m)s(m), where s1, ... , s(m) are given integers. The method generalises to produce small unimodular transformation matrices for computing the Hermite normal form of an integer matrix.
Resumo:
We examined the effect of age-specific fecundity, mated status, and egg load on host-plant selection, by Helicoverpa armigera under laboratory conditions. The physiological state of a female moth (number of mature eggs produced) greatly influences her host-plant specificity and propensity to oviposit (oviposition motivation). Female moths were less discriminating against cowpea (a low-ranked host) relative to maize (a high-ranked host) as egg load increased. Similarly, increased egg load led to a greater propensity to oviposit on both cowpea and maize. Distribution of oviposition with age of mated females peaked shortly after mating and declined steadily thereafter until death. Most mated females (88%) carried only a single spermatophore, a few females (12%) contained two. The significance of these findings in relation to host-plant selection by H. armigera, and its management, are discussed.
Resumo:
We describe a strategy for the selection and amplification of foreign gene expression in Chinese hamster ovary (CHO) cells employing a metallothionein gene-containing expression vector. This report describes an amplification procedure that results in an enrichment of clones exhibiting high levels of recombinant protein production and reduces the labour required for screening recombinant cell lines.
Resumo:
Life histories are generally assumed to evolve via antagonistic pleiotropy (negative genetic correlations) among traits, and trade-offs between life-history traits are typically studied using either phenotypic manipulations or selection experiments. We investigated the trade-off between egg size and fecundity in Drosophila melanogaster by examining both the phenotypic and genetic relationships between these traits after artificial selection for large and small eggs, relative to female body size. Egg size responded strongly to selection in both directions, increasing in the large-egg selected lines and decreasing in the small-egg selected lines. Phenotypic correlations between egg size and fecundity in the large-egg selected lines were negative, but no relationship between these traits occurred in either the control or small-egg selected lines. There was no negative genetic correlation between egg size and fecundity. Total reproductive allocation decreased in the small-egg selected lines but did not increase in the large-egg lines. Our results have three implications. First, our selection procedure may have forced females selected for large eggs into a physiological trade-off not reflected in a negative genetic correlation between these traits. Second, the lack of a negative genetic correlation between egg size and number suggests that the phenotypic trade-off frequently observed between egg size and number in other organisms may not evolve over the short term via a direct genetic trade-off whereby increases in egg size are automatically accompanied by decreased fecundity. Finally, total reproductive allocation may not evolve independently of egg size as commonly assumed.
Resumo:
We investigated the role of chemoreception in the host selection and oviposition behaviour of Helicoverpa armigera in the laboratory using five cotton genotypes and synthetic volatile terpenes. Female moths oviposited on substrates treated with methanol, ethanol, acetone and pentane extracts of leaves, squares and flowers of the cotton genotypes. Phytochemicals soluble in pentane were the most efficient in eliciting oviposition behaviour. In a two-way bioassay, pentane extracts of leaves or squares of a Multiple Host-plant Resistance genotype (MHR11), Deltapine commercial (DP90), and Smith Red Leaf (SRL) received significantly more eggs than solvent-treated controls. Extracts of squares of the native genotype Gossypium nelsonii did not receive more eggs. Females preferred DP90 and MHR11 to SRL and G. nelsonii. Female moths also laid more eggs on pentane extracts of MHR11 flowers than MHR11 leaves from preflowering, early flowering and peak-flowering plants. In a flight chamber, female moths used olfactory cues at short range to mediate oviposition and discrimination between host plants. Egg-laying, mated females were attracted at a distance (1.5 m) to volatile compounds released by whole plants and odours emanating from filter papers treated with synthetic volatile terpenes. Individually, the terpenes did not stimulate any significant oviposition response. However, there was a significant oviposition response to a mixture of equal volumes of the terpenes (trans-beta-caryophyllene, alpha-pinene, beta-pinene, myrcene, beta-bisabolol, and alpha-humulene). Conversely, antennectomised (moths with transected antennae), egg-laying, mated females did not stimulate any significant oviposition response. The significance of these findings in relation to H. armigera hostplant selection are discussed.
Resumo:
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Resumo:
Realistic time frames in which management decisions are made often preclude the completion of the detailed analyses necessary for conservation planning. Under these circumstances, efficient alternatives may assist in approximating the results of more thorough studies that require extensive resources and time. We outline a set of concepts and formulas that may be used in lieu of detailed population viability analyses and habitat modeling exercises to estimate the protected areas required to provide desirable conservation outcomes for a suite of threatened plant species. We used expert judgment of parameters and assessment of a population size that results in a specified quasiextinction risk based on simple dynamic models The area required to support a population of this size is adjusted to take into account deterministic and stochastic human influences, including small-scale disturbance deterministic trends such as habitat loss, and changes in population density through processes such as predation and competition. We set targets for different disturbance regimes and geographic regions. We applied our methods to Banksia cuneata, Boronia keysii, and Parsonsia dorrigoensis, resulting in target areas for conservation of 1102, 733, and 1084 ha, respectively. These results provide guidance on target areas and priorities for conservation strategies.