987 resultados para Renin-angiotensin- aldosterone system
Resumo:
Angiotensin II is a potent arterial vasoconstrictor and induces hypertension. Angiotensin II also exerts a trophic effect on cardiomyocytes in vitro. The goals of the present study were to document an in vivo increase in cardiac angiotensins in the absence of elevated plasma levels or hypertension and to investigate prevention or regression of ventricular hypertrophy by renin-angiotensin system blockade. We demonstrate that high cardiac angiotensin II is directly responsible for right and left ventricular hypertrophy. We used transgenic mice overexpressing angiotensinogen in cardiomyocytes characterized by cardiac hypertrophy without fibrosis and normal blood pressure. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent or normalize ventricular hypertrophy. Surprisingly, in control mice, receptor blockade decreases tissue angiotensin II despite increased plasma levels. This suggests that angiotensin II may be protected from metabolization by binding to its receptor. Blocking of the angiotensin II type 1 receptor rather than enhanced stimulation of the angiotensin II type 2 receptor may prevent remodeling and account for the beneficial effects of angiotensin antagonists.
Resumo:
Hypertension is associated with increased risk of cardiovascular diseases. Antihypertensive treatment, particularly blockade of the renin-angiotensin system, contributes to prevent atherosclerosis-mediated cardiovascular events. Direct comparison of different antihypertensive treatments on atherosclerosis and particularly plaque stabilization is sparse. ApoE(-/-) mice with vulnerable (2-kidney, 1-clip renovascular hypertension model) or stable (1-kidney, 1-clip renovascular hypertension model) atherosclerotic plaques were used. Mice were treated with aliskiren (renin inhibitor), irbesartan (angiotensin-receptor blocker), atenolol (beta-blocker), or amlodipine (calcium channel blocker). Atherosclerosis characteristics were assessed. Hemodynamic and hormonal parameters were measured. Aliskiren and irbesartan significantly prevented atherosclerosis progression in 2-kidney, 1-clip mice. Indeed, compared with untreated animals, plaques showed thinner fibrous cap (P<0.05); smaller lipid core (P<0.05); decreased media degeneration, layering, and macrophage content (P<0.05); and increased smooth muscle cell content (P<0.05). Interestingly, aliskiren significantly increased the smooth muscle cell compared with irbesartan. Despite similar blood pressure lowering, only partial plaque stabilization was attained by atenolol and amlodipine. Amlodipine increased plaque smooth muscle cell content (P<0.05), whereas atenolol decreased plaque inflammation (P<0.05). This divergent effect was also observed in 1-kidney, 1-clip mice. Normalizing blood pressure by irbesartan increased the plasma renin concentration (5932+/-1512 ng/mL per hour) more than normalizing it by aliskiren (16085+/-5628 ng/mL per hour). Specific renin-angiotensin system blockade prevents atherosclerosis progression. First, evidence is provided that direct renin inhibition mediates atherosclerotic plaque stabilization. In contrast, beta-blocker and calcium channel blocker treatment only partially stabilize plaques differently influencing atherogenesis. Angiotensin II decisively mediates plaque vulnerability. The plasma renin concentration measurement by an indirect method did not confirm the excessive increase of plasma renin concentration reported in the literature during aliskiren compared with irbesartan or amlodipine treatment.
Resumo:
The vascular effects of angiotensin converting enzyme inhibitors are mediated by the inhibition of the dual action of angiotensin converting enzyme (ACE): production of angiotensin II and degradation of bradykinin. The deleterious effect of converting enzyme inhibitors (CEI) on neonatal renal function have been ascribed to the elevated activity of the renin-angiotensin system. In order to clarify the role of bradykinin in the CEI-induced renal dysfunction of the newborn, the effect of perindoprilat was investigated in anesthetized newborn rabbits with intact or inhibited bradykinin B2 receptors. Inulin and PAH clearances were used as indices of GFR and renal plasma flow, respectively. Perindoprilat (20 microg/kg i.v.) caused marked systemic and renal vasodilation, reflected by a fall in blood pressure and renal vascular resistance. GFR decreased, while urine flow rate did not change. Prior inhibition of the B2 receptors by Hoe 140 (300 microg/kg s.c.) did not prevent any of the hemodynamic changes caused by perindoprilat, indicating that bradykinin accumulation does not contribute to the CEI-induced neonatal renal effects. A control group receiving only Hoe 140 revealed that BK maintains postglomerular vasodilation via B2 receptors in basal conditions. Thus, the absence of functional B2 receptors in the newborn was not responsible for the failure of Hoe 140 to prevent the perindoprilat-induced changes. Species- and/or age-related differences in the kinin-metabolism could explain these results, suggesting that in the newborn rabbit other kininases than ACE are mainly responsible for the degradation of bradykinin.
Resumo:
BACKGROUND: Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve haemodynamics in some patients with congestive heart failure. It is now possible to chronically antagonize angiotensin II at its receptor using non-peptide angiotensin II inhibitors such as losartan (DuP 753/MK-954) or TCV 116. EFFECT OF NON-PEPTIDE ANGIOTENSIN II ANTAGONISTS: When administered by mouth, DuP 753 and TCV 116 induce dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the corresponding active metabolites E3174 and CV11974. Preliminary studies performed in hypertensive patients suggest that losartan lowers blood pressure to an equivalent extent to an angiotensin converting enzyme (ACE) inhibitor. CONCLUSIONS: Further investigation is required to show whether these new angiotensin II antagonists compounds compare favourably with ACE inhibitors.
Resumo:
To clarify the role of Angiotensin II (Ang II) in the sensory system and especially in the trigeminal ganglia, we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of Ang II and substance P in the rat and human trigeminal ganglia. The rat trigeminal ganglia expressed substantial amounts of Ang-N- and ACE mRNA as determined by quantitative real time PCR. Renin mRNA was untraceable in rat samples. Cathepsin D was detected in the rat trigeminal ganglia indicating the possibility of existence of pathways alternative to renin for Ang I formation. In situ hybridization in rat trigeminal ganglia revealed expression of Ang-N mRNA in the cytoplasm of numerous neurons. By using immunocytochemistry, a number of neurons and their processes in both the rat and human trigeminal ganglia were stained for Ang II. Post in situ hybridization immunocytochemistry reveals that in the rat trigeminal ganglia some, but not all Ang-N mRNA-positive neurons marked for Ang II. In some neurons Substance P was found colocalized with Ang II. Angiotensins from rat trigeminal ganglia were quantitated by radioimmunoassay with and without prior separation by high performance liquid chromatography. Immunoreactive angiotensin II (ir-Ang II) was consistently present and the sum of true Ang II (1-8) octapeptide and its specifically measured metabolites were found to account for it. Radioimmunological and immunocytochemical evidence of ir-Ang II in neuronal tissue is compatible with Ang II as a neurotransmitter. In conclusion, these results suggest that Ang II could be produced locally in the neurons of rat trigeminal ganglia. The localization and colocalization of neuronal Ang II with Substance P in the trigeminal ganglia neurons may be the basis for a participation and function of Ang II in the regulation of nociception and migraine pathology.
Resumo:
Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.
Resumo:
This double-blind placebo-controlled study was designed to investigate the acute and sustained hormonal, renal hemodynamic, and tubular effects of concomitant ACE and neutral endopeptidase (NEP) inhibition by omapatrilat, a vasopeptidase inhibitor, in men. Thirty-two normotensive subjects were randomized to receive a placebo, omapatrilat (40 or 80 mg), or the fosinopril/hydrochlorothiazide (FOS/HCTZ; 20 and 12.5 mg, respectively) fixed combination for 1 week. Blood pressure, renal hemodynamics, urinary electrolytes and atrial natriuretic peptide excretion, and several components of the renin-angiotensin system were measured for 6 hours on days 1 and 7 of drug administration. When compared with the placebo and the FOS/HCTZ combination, omapatrilat induced a significant decrease in plasma angiotensin II levels (P<0.001 versus placebo; P<0.05 versus FOS/HCTZ) and an increase in urinary atrial natriuretic peptide excretion (P<0.01). These hormonal effects were associated with a significant fall in blood pressure (P<0.01) and a marked renal vasodilatation, but with no significant changes in glomerular filtration rate. The FOS/HCTZ markedly increased urinary sodium excretion (P<0.001). The acute natriuretic response to FOS/HCTZ was significantly greater than that observed with omapatrilat (P<0.01). Over 1 week, however, the cumulative sodium excretion induced by both doses of omapatrilat (P<0.01 versus placebo) was at least as great as that induced by the dose of FOS/HCTZ (P=NS versus FOS/HCTZ). In conclusion, the results of the present study in normal subjects demonstrate that omapatrilat has favorable renal hemodynamic effects. Omapatrilat combines potent ACE inhibition with a sustained natriuresis, which explains its well-documented potent antihypertensive efficacy.
Resumo:
Hemodynamic and biochemical effects of the new renin inhibitor CGP 38560A (molecular weight 826) were tested in 15 healthy volunteers after a single-blind, randomized, placebo-controlled protocol. At a 2-week interval, groups of five subjects received a 30-minute infusion of either 5% dextrose or CGP 38560A 50, 125, or 250 micrograms/kg. Blood pressure, heart rate, plasma renin activity, active and total renin, angiotensin-(1-8)octapeptide (angiotensin II), and aldosterone were sequentially measured up to 3 hours from the onset of the infusion. There was no consistent change in blood pressure or heart rate. Plasma renin activity and angiotensin II decreased dose dependently, and peak suppression was observed at the end of the infusion of CGP 38560A and after the 250-micrograms/kg dose. Plasma renin activity fell from 1.0 +/- 0.19 (mean +/- SEM) to less than 0.05 ng/ml/hr in all five subjects (p less than 0.001), and angiotensin II fell from 7.7 +/- 1.2 to 2.6 +/- 0.9 femtomole/ml (p less than 0.01). Active renin rose fourfold from 24 +/- 1.9 to 98 +/- 14 pg/ml (p less than 0.001) at the end of the infusion of the high dose. Plasma angiotensin II returned toward its initial values much faster than plasma renin activity and active renin. In conclusion, CGP 38560A was well tolerated. It induced a dose-dependent decrease in angiotensin II and plasma renin activity and a long-lasting and dose-dependent rise in active renin. The doses used did not reduce plasma angiotensin II maximally despite reduction of plasma renin activity to unmeasurable levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND: The excess in cardiovascular risk in patients with rheumatoid arthritis provides a strong rationale for early therapeutical interventions. In view of the similarities between atherosclerosis and rheumatoid arthritis and the proven benefit of angiotensin-converting enzyme inhibitors in atherosclerotic vascular disease, it was the aim of the present study to delineate the impact of ramipril on endothelial function as well as on markers of inflammation and oxidative stress in patients with rheumatoid arthritis. METHODS AND RESULTS: Eleven patients with rheumatoid arthritis were included in this randomized, double-blind, crossover study to receive ramipril in an uptitration design (2.5 to 10 mg) for 8 weeks followed by placebo, or vice versa, on top of standard antiinflammatory therapy. Endothelial function assessed by flow-mediated dilation of the brachial artery, markers of inflammation and oxidative stress, and disease activity were investigated at baseline and after each treatment period. Endothelial function assessed by flow-mediated dilation increased from 2.85+/-1.49% to 4.00+/-1.81% (P=0.017) after 8 weeks of therapy with ramipril but did not change with placebo (from 2.85+/-1.49% to 2.84+/-2.47%; P=0.88). Although systolic blood pressure and heart rate remained unaltered, diastolic blood pressure decreased slightly from 78+/-7 to 74+/-6 mm Hg (P=0.03). Tumor necrosis factor-alpha showed a significant inverse correlation with flow-mediated dilation (r=-0.408, P=0.02), and CD40 significantly decreased after ramipril therapy (P=0.049). CONCLUSIONS: Angiotensin-converting enzyme inhibition with 10 mg/d ramipril for 8 weeks on top of current antiinflammatory treatment markedly improved endothelial function in patients with rheumatoid arthritis. This finding suggests that angiotensin-converting enzyme inhibition may provide a novel strategy to prevent cardiovascular events in these patients.
Resumo:
The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.
Resumo:
The potential role of angiotensin-II in mediating catecholamine and neuropeptide-Y release in a human pheochromocytoma has been investigated. Angiotensin-II type I receptors are transcribed and translated into functional proteins in a surgically removed pheochromocytoma. Primary cell culture of the tumor has been studied in a perfused system. Angiotensin-II increased the release of norepinephrine and neuropeptide-Y by the pheochromocytes. Activation of the angiotensin-II type I receptors by angiotensin-II was associated with a rise in cytosolic free calcium. The renin-angiotensin system may, therefore, contribute to the secretion of catecholamines and NPY occurring in patients with pheochromocytoma and when stimulated trigger hypertensive crisis.
Resumo:
1. The availability of orally active specific angiotensin receptor antagonists (AT1 antagonists) has opened new therapeutic choices and provided probes to test the specific role of the renin-angiotensin system in the pathogenesis of cardiovascular disease. 2. The data available so far suggest that the antihypertensive efficacy of angiotensin receptor antagonists is comparable to that of angiotensin-converting enzyme (ACE) inhibitors. This provides further evidence that this latter class of drugs exerts its effect mainly through blockade of the renin-angiotensin enzymatic cascade. As expected, the association of a diuretic exerts an equally strong additive effect to the antihypertensive efficacy of both classes of drugs. 3. The most common side effect of ACE inhibitors, dry cough, does not occur with AT1 antagonists, which confirms the long-held view that this untoward effect of the ACE inhibitors is due to renin-angiotensin-independent mechanisms. 4. Long-term studies with morbidity/mortality outcome results are needed, before a definite position can be assigned to this newcomer in the orchestra of modern antihypertensive drugs. Notwithstanding, this new class of agents already represents an exciting new addition to our therapeutic armamentarium.
Resumo:
BACKGROUND: The activity of the renin-angiotensin system is usually evaluated as plasma renin activity (PRA, ngAI/ml per h) but the reproducibility of this enzymatic assay is notoriously scarce. We compared the inter and intralaboratory reproducibilities of PRA with those of a new automated chemiluminescent assay, which allows the direct quantification of immunoreactive renin [chemiluminescent immunoreactive renin (CLIR), microU/ml]. METHODS: Aliquots from six pool plasmas of patients with very low to very high PRA levels were measured in 12 centres with both the enzymatic and the direct assays. The same methods were applied to three control plasma preparations with known renin content. RESULTS: In pool plasmas, mean PRA values ranged from 0.14 +/- 0.08 to 18.9 +/- 4.1 ngAI/ml per h, whereas those of CLIR ranged from 4.2 +/- 1.7 to 436 +/- 47 microU/ml. In control plasmas, mean values of PRA and of CLIR were always within the expected range. Overall, there was a significant correlation between the two methods (r = 0.73, P < 0.01). Similar correlations were found in plasmas subdivided in those with low, intermediate and high PRA. However, the coefficients of variation among laboratories found for PRA were always higher than those of CLIR, ranging from 59.4 to 17.1% for PRA, and from 41.0 to 10.7% for CLIR (P < 0.01). Also, the mean intralaboratory variability was higher for PRA than for CLIR, being respectively, 8.5 and 4.5% (P < 0.01). CONCLUSION: The measurement of renin with the chemiluminescent method is a reliable alternative to PRA, having the advantage of a superior inter and intralaboratory reproducibility.
Resumo:
Objective: To compare effects of a non-renin-angiotensin system (RAS) blocker, using a CCB, or a RAS blocker, using an ARB regimen on the arterial stiffness reduction in postmenopausal hypertensive women. Methods: In this prospective study, a total of 125 hypertensive women (age: 61.4_6 yrs; 98% Caucasian; BW: 71.9_14 kg; BMI: 27.3_5 kg/m2; SBP/ DBP: 158_11/92_9 mmHg) were randomized between ARB (valsartan 320mg_HCTZ) and CCB (amlodipine 10mg _ HCTZ). The primary outcome was carotid-femoral pulse wave velocity (PWV) changes after 38 weeks of treatment. Results: There were no significant differences in baseline demographic data between the two groups. Both treatments effectively lowered BP at the end of the study with similar (p>0.05) reductions in the valsartan (_22.9/_10.9 mmHg) and amlodipine based (_25.2/_11.7 mmHg) treatment groups. Despite a lower (p<0.05 for DBP) central SBP/DBP in the CCB group (_19.2/_10.3 mmHg) compared to the valsartan group (_15.7/_7.6 mmHg) at week 38, a similar reduction in carotid-femoral PWV (_1.7 vs _1.9 m/sec; p>0.05) was observed between both groups. The numerically larger BP reduction observed in the CCB group was associated with a much higher incidence of peripheral edema (77% vs 14%) than the valsartan group. Conclusion: In summary, BP lowering in postmenopausal women led to a reduction in arterial stiffness assessed by PWV measurement. Both regimens reduced PWV at 38 weeks of treatment to a similar degree, despite differences in BP lowering suggesting that the effect of RAS blockade to influence PWV may partly be independent of BP.